OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 3 — Feb. 1, 2013
  • pp: 311–313

Fiber Bragg grating strain modulation based on nonlinear string transverse-force amplifier

Kuo Li, Man Hong Yau, Tommy H. T. Chan, David Thambiratnam, and Hwa Yaw Tam  »View Author Affiliations

Optics Letters, Vol. 38, Issue 3, pp. 311-313 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The only effective method of fiber Bragg grating (FBG) strain modulation has been by changing the distance between its two fixed ends. We demonstrate an alternative that is more sensitive to force based on the nonlinear amplification relationship between a transverse force applied to a stretched string and its induced axial force. It may improve the sensitivity and size of an FBG force sensor, reduce the number of FBGs needed for multiaxial force monitoring, and control the resonant frequency of an FBG accelerometer.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 14, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 5, 2012
Published: January 22, 2013

Kuo Li, Man Hong Yau, Tommy H. T. Chan, David Thambiratnam, and Hwa Yaw Tam, "Fiber Bragg grating strain modulation based on nonlinear string transverse-force amplifier," Opt. Lett. 38, 311-313 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Lee, Opt. Fiber Technol. 9, 57 (2003). [CrossRef]
  2. M. Jones, Nat. Photonics 2, 153 (2008). [CrossRef]
  3. W. W. Morey and W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent 5,042,898 (August27, 1991).
  4. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, Appl. Opt. 34, 6859 (1995). [CrossRef]
  5. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012). [CrossRef]
  6. J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, Appl. Opt. 38, 2752 (1999). [CrossRef]
  7. K. Li, Z. A. Zhou, and A. Liu, Chin. Opt. Lett. 7, 121 (2009). [CrossRef]
  8. K. Li and Z. A. Zhou, Chin. Opt. Lett. 7, 191 (2009). [CrossRef]
  9. H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, J. Lightwave Technol. 29, 1714 (2011). [CrossRef]
  10. H. J. Chen, L. Wang, and W. F. Liu, Appl. Opt. 47, 556 (2008). [CrossRef]
  11. X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005). [CrossRef]
  12. D. Reitze, Nat. Photonics 2, 582 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited