OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 3 — Feb. 1, 2013
  • pp: 344–346

Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization

Jun-Ping Zhuang and Sze-Chun Chan  »View Author Affiliations


Optics Letters, Vol. 38, Issue 3, pp. 344-346 (2013)
http://dx.doi.org/10.1364/OL.38.000344


View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The period-one (P1) nonlinear dynamics of a semiconductor laser subject to both optical injection and optical feedback are investigated for photonic microwave generation. The optical injection first drives the laser into P1 dynamics so that its intensity oscillates at a microwave frequency. A dual-loop optical feedback then stabilizes the fluctuations of the oscillation frequency. Photonic generation at 45.424 GHz is demonstrated with a linewidth below 50 kHz using a laser with a relaxation resonance frequency of only 7 GHz. The dual-loop feedback effectively narrows the linewidth by over an order of magnitude, reduces the phase noise variance by more than 500 times, and suppresses side peaks in the power spectrum.

© 2013 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(350.4010) Other areas of optics : Microwaves
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 11, 2012
Manuscript Accepted: December 26, 2012
Published: January 28, 2013

Citation
Jun-Ping Zhuang and Sze-Chun Chan, "Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization," Opt. Lett. 38, 344-346 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-3-344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Yao, J. Lightwave Technol. 27, 314 (2009). [CrossRef]
  2. X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011). [CrossRef]
  3. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, Appl. Phys. Lett. 96, 051118 (2010). [CrossRef]
  4. G. Chen, D. Huang, X. Zhang, and H. Cao, Opt. Lett. 33, 554 (2008). [CrossRef]
  5. Y. N. Tan, L. Jin, L. Cheng, Z. Quan, M. Li, and B. O. Guan, Opt. Express 20, 6961 (2012). [CrossRef]
  6. X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 36, 79 (2000). [CrossRef]
  7. S. L. Pan, Z. Z. Tang, D. Zhu, D. Ben, and J. P. Yao, Opt. Lett. 36, 4722 (2011). [CrossRef]
  8. S. L. Pan and J. P. Yao, Opt. Lett. 35, 1911 (2010). [CrossRef]
  9. B. Romeira, K. Seunarine, C. N. Ironside, A. E. Kelly, and J. M. L. Figueiredo, IEEE Photon. Technol. Lett. 23, 1148 (2011). [CrossRef]
  10. I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, Phys. Rev. E 80, 026218 (2009). [CrossRef]
  11. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010). [CrossRef]
  12. A. Quirce and A. Valle, Opt. Express 20, 13390 (2012). [CrossRef]
  13. T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999). [CrossRef]
  14. S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004). [CrossRef]
  15. Y. S. Juan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011). [CrossRef]
  16. T. B. Simpson, J. M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron.19(2013).
  17. S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010). [CrossRef]
  18. S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. 41, 1142 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited