OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 3 — Feb. 1, 2013
  • pp: 371–373

Discrete vortex solitons and parity time symmetry

Daniel Leykam, Vladimir V. Konotop, and Anton S. Desyatnikov  »View Author Affiliations

Optics Letters, Vol. 38, Issue 3, pp. 371-373 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the effect of lifting the degeneracy of vortex modes with a parity time (PT) symmetric defect, using discrete vortices in a circular array of nonlinear waveguides as an example. When the defect is introduced, the degenerate linear vortex modes spontaneously break PT symmetry and acquire complex eigenvalues, but nonlinear propagating modes with real propagation constants can still exist. The stability of nonlinear modes depends on both the magnitude and the sign of the vortex charge; thus PT symmetric systems offer new mechanisms to control discrete vortices.

© 2013 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(230.7370) Optical devices : Waveguides
(080.6755) Geometric optics : Systems with special symmetry

ToC Category:
Optical Devices

Original Manuscript: September 13, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: January 2, 2013
Published: January 31, 2013

Daniel Leykam, Vladimir V. Konotop, and Anton S. Desyatnikov, "Discrete vortex solitons and parity time symmetry," Opt. Lett. 38, 371-373 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008). [CrossRef]
  2. A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005). [CrossRef]
  3. B. A. Malomed and P. G. Kevrekidis, Phys. Rev. E 64, 026601 (2001). [CrossRef]
  4. T. J. Alexander, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. Lett. 93, 063901 (2004). [CrossRef]
  5. A. Bezryadina, E. Eugenieva, and Z. Chen, Opt. Lett. 31, 2456 (2006). [CrossRef]
  6. A. S. Desyatnikov, M. R. Dennis, and A. Ferrando, Phys. Rev. A 83, 063822 (2011). [CrossRef]
  7. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998). [CrossRef]
  8. S. V. Dmitriev, A. A. Sukhorukov, and Y. S. Kivshar, Opt. Lett. 35, 2976 (2010). [CrossRef]
  9. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010). [CrossRef]
  10. K. Li and P. G. Kevrekidis, Phys. Rev. E 83, 066608 (2011). [CrossRef]
  11. D. A. Zezyulin and V. V. Konotop, Phys. Rev. Lett. 108, 213906 (2012). [CrossRef]
  12. A. A. Sukhorukov, S. V. Dmitriev, S. S. Suchkov, and Yu. S. Kivshar, Opt. Lett. 37, 2148 (2012). [CrossRef]
  13. D. D. Scott and Y. N. Joglekar, Phys. Rev. A 85, 062105 (2012). [CrossRef]
  14. E. Caliceti, F. Cannata, and S. Graffi, J. Phys. A 39, 10019 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited