OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 4 — Feb. 15, 2013
  • pp: 392–394

Directive radiation from a diffuse Luneburg lens

Oscar Quevedo-Teruel and Yang Hao  »View Author Affiliations


Optics Letters, Vol. 38, Issue 4, pp. 392-394 (2013)
http://dx.doi.org/10.1364/OL.38.000392


View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transformation electromagnetics has opened possibilities for designing antenna structures. Using an analytical approach, we demonstrate here how directive antenna radiation can be achieved from an omnidirectional source behind a diffuse surface. This diffuse surface has been obtained by an optical transformation of a Luneburg lens. Two different transformation approaches have been proposed (polynomial and sinusoidal), and for both cases, the resulting material properties have been simplified to ease the fabrication by using all-dielectric media. Therefore, the proposed design has no upper boundary to the operational frequency. Directive radiation has been achieved from thin diffuse structures, which demonstrates promising future possibilities for this technique.

© 2013 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(080.3630) Geometric optics : Lenses
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 6, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 21, 2012
Published: February 6, 2013

Citation
Oscar Quevedo-Teruel and Yang Hao, "Directive radiation from a diffuse Luneburg lens," Opt. Lett. 38, 392-394 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-4-392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Leonhardt, Science 312, 1777 (2006). [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef]
  3. D. A. Roberts, N. Kundtz, and D. R. Smith, Opt. Express 17, 16535 (2009). [CrossRef]
  4. A. Demetriadou and Y. Hao, Opt. Express 19, 19925 (2011). [CrossRef]
  5. W. Tang, Y. Hao, and F. Medina, Opt. Express 18, 16946 (2010). [CrossRef]
  6. D. Bao, K. Z. Rajab, W. Tang, and Y. Hao, Appl. Phys. Lett. 97, 134105 (2010). [CrossRef]
  7. N. Kundtz and D. R. Smith, Nat. Mater. 9, 129 (2010). [CrossRef]
  8. R. Yang, W. Tang, and Y. Hao, Opt. Express 19, 12348 (2011). [CrossRef]
  9. R. Luneburg, Mathematical Theory of Optics (Brown University, 1944).
  10. A. S. Gutman, J. Appl. Phys. 25, 855 (1954). [CrossRef]
  11. Q. Cheng, H.-F. Ma, and T.-J. Cui, Appl. Phys. Lett. 95, 181901 (2009). [CrossRef]
  12. H.-F. Ma and T.-J. Cui, Nat. Commun. 1, 124 (2010). [CrossRef]
  13. O. Quevedo-Teruel, W. Tang, and Y. Hao, Opt. Lett. 37, 4850 (2012). [CrossRef]
  14. F. Kong, B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, Appl. Phys. Lett. 91, 253509 (2007). [CrossRef]
  15. Y. Hao and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications (Artech House, 2008).
  16. Y. Zhao, C. Argyropoulos, and Y. Hao, Opt. Express 16, 6717 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited