OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 4 — Feb. 15, 2013
  • pp: 446–448

Digital broadband linearization of optical links

Daniel Lam, Ali M. Fard, Brandon Buckley, and Bahram Jalali  »View Author Affiliations


Optics Letters, Vol. 38, Issue 4, pp. 446-448 (2013)
http://dx.doi.org/10.1364/OL.38.000446


View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a digital postprocessing linearization technique to efficiently suppress dynamic distortions added to a wideband signal in an analog optical link. Our technique achieves up to 35 dB suppression of intermodulation distortions over multiple octaves of signal bandwidth. In contrast to conventional linearization methods, it does not require excessive analog bandwidth for performing digital correction. This is made possible by regenerating undesired distortions from the captured output, and subtracting it from the distorted digitized signal. Moreover, we experimentally demonstrate a record spurious-free dynamic range of 120dB·Hz2/3 over a 6 GHz electrical signal bandwidth. While our digital broadband linearization technique advances state-of-the-art optical links, it can also be applied to other nonlinear dynamic systems.

© 2013 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 8, 2012
Revised Manuscript: January 4, 2013
Manuscript Accepted: January 10, 2013
Published: February 8, 2013

Citation
Daniel Lam, Ali M. Fard, Brandon Buckley, and Bahram Jalali, "Digital broadband linearization of optical links," Opt. Lett. 38, 446-448 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-4-446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007). [CrossRef]
  2. A. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002). [CrossRef]
  3. W. S. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).
  4. T. Darcie and G. Bodeep, IEEE Trans. Microwave Theor. Tech. 38, 524 (1990). [CrossRef]
  5. C. Cox, IEE Proc. Optoelectron. 139, 4 (1992). [CrossRef]
  6. C. Cox, E. Ackerman, R. Helkey, and G. Betts, IEEE Trans. Microwave Theor. Tech. 45, 1375 (1997). [CrossRef]
  7. C. Cox, E. Ackerman, G. Betts, and J. Prince, IEEE Trans. Microwave Theor. Tech. 54, 906 (2006). [CrossRef]
  8. Y. Takahashi, K. Nagano, and Y. Takasaki, IEEE J. Sel. Areas Commun. 8, 1382 (1990). [CrossRef]
  9. G. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994). [CrossRef]
  10. E. I. Ackerman, IEEE Trans. Microwave Theor. Tech. 47, 2271 (1999). [CrossRef]
  11. H. Chou, A. Ramaswamy, D. Zibar, L. Johansson, J. Bowers, M. Rodwell, and L. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007). [CrossRef]
  12. R. Sadhwani and B. Jalali, J. Lightwave Technol. 21, 3180 (2003). [CrossRef]
  13. A. Shah and B. Jalali, IEE Proc. Optoelectron. 152, 16 (2005). [CrossRef]
  14. J. Chou, O. Boyraz, and B. Jalali, Opt. Express 13, 15 (2005). [CrossRef]
  15. A. Karim and J. Devenport, IEEE Photon. Technol. Lett. 19, 5 (2007). [CrossRef]
  16. P. Juodawlkis, J. Twitchell, G. Betts, J. Hargreaves, R. Younger, J. Wasserman, F. O’Donnell, K. Ray, and R. Williamson, IEEE Trans. Microwave Theor. Tech. 49, 1840 (2001). [CrossRef]
  17. A. Fard, S. Gupta, and B. Jalali, Opt. Lett. 36, 1077 (2011). [CrossRef]
  18. A. A. Lab Systems LTD., http://www.lab-systems.com .
  19. Photonic Systems, Inc., http://www.photonicsinc.com .
  20. Optical Zonu, http://www.opticalzonu.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited