OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 5 — Mar. 1, 2013
  • pp: 661–663

Atom number in magneto-optic traps with millimeter scale laser beams

Gregory W. Hoth, Elizabeth A. Donley, and John Kitching  »View Author Affiliations


Optics Letters, Vol. 38, Issue 5, pp. 661-663 (2013)
http://dx.doi.org/10.1364/OL.38.000661


View Full Text Article

Enhanced HTML    Acrobat PDF (486 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measure the number of atoms N trapped in a conventional vapor-cell magneto-optic trap (MOT) using beams that have a diameter d in the range 1–5 mm. We show that the Nd3.6 scaling law observed for larger MOTs is a robust approximation for optimized MOTs with beam diameters as small as 3 mm. For smaller beams, the description of the scaling depends on how d is defined. The most consistent picture of the scaling is obtained when d is defined as the diameter where the intensity profile of the trapping beams decreases to the saturation intensity. Using this definition, N scales as d6 for d<2.3mm but, at larger d, N still scales as d3.6.

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(020.3320) Atomic and molecular physics : Laser cooling
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: December 26, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 14, 2013
Published: February 22, 2013

Citation
Gregory W. Hoth, Elizabeth A. Donley, and John Kitching, "Atom number in magneto-optic traps with millimeter scale laser beams," Opt. Lett. 38, 661-663 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-5-661


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kitching, S. Knappe, and E. A. Donley, IEEE Sens. J. 11, 1749 (2011). [CrossRef]
  2. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, Phys. Rev. Lett. 82, 4619 (1999). [CrossRef]
  3. C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990). [CrossRef]
  4. K. Lindquist, M. Stephens, and C. Wieman, Phys. Rev. A 46, 4082 (1992). [CrossRef]
  5. K. E. Gibble, S. Kasapi, and S. Chu, Opt. Lett. 17, 526(1992). [CrossRef]
  6. S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, New J. Phys. 13, 043029 (2011). [CrossRef]
  7. C. J. Myatt, N. R. Newbury, and C. E. Wieman, Opt. Lett. 18, 649 (1993). [CrossRef]
  8. P. Kohns, P. Buch, W. Süptitz, C. Csambal, and W. Ertmer, Europhys. Lett. 22, 517 (1993). [CrossRef]
  9. R. Lutwak, D. Emmons, R. M. Garvey, and P. Vlitas, in Proceedings of the 33rd Annual Precise Time and Time Interval (PTTI) Meeting (2001).
  10. H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, Appl. Phys. Lett. 100, 011106 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited