OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 6 — Mar. 15, 2013
  • pp: 809–811

Exact elegant Laguerre–Gaussian vector wave packets

W. Nasalski  »View Author Affiliations


Optics Letters, Vol. 38, Issue 6, pp. 809-811 (2013)
http://dx.doi.org/10.1364/OL.38.000809


View Full Text Article

Enhanced HTML    Acrobat PDF (123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An exact closed-form representation is derived of a vector elegant Laguerre–Gaussian wave packet. Its space–time representation consists of three mutually orthogonal field components—of a common azimuthal index and different radial indices—uniquely distinguished by first three powers of the paraxial parameter. The transverse components are of tm-radial and te-azimuthal polarization and appear, under their normal incidence, to be eigenmodes of any horizontally planar, homogeneous and isotropic structure, with eigenvalues given by the reflection and transmission coefficients. In this context, the interrelations between the cross-polarization symmetries of wave packets in free space and at medium planar interfaces are discussed.

© 2013 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

History
Original Manuscript: December 4, 2012
Revised Manuscript: January 25, 2013
Manuscript Accepted: January 27, 2013
Published: March 5, 2013

Citation
W. Nasalski, "Exact elegant Laguerre–Gaussian vector wave packets," Opt. Lett. 38, 809-811 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-6-809


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, Lasers (University Science, 1986).
  2. A. E. Siegman, J. Opt. Soc. Am. 63, 1093 (1973). [CrossRef]
  3. T. Takenaka, M. Yokota, and O. Fukumitsu, J. Opt. Soc. Am. A 2, 826 (1985). [CrossRef]
  4. L. Allen, M. J. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999). [CrossRef]
  5. S. M. Barnett and L. Allen, Opt. Commun. 110, 670 (1994). [CrossRef]
  6. C. J. R. Sheppard and S. Saghafi, Phys. Rev A 57, 2971 (1998). [CrossRef]
  7. S. R. Seshadri, Opt. Lett. 27, 1872 (2002). [CrossRef]
  8. G. Rodriguez-Morales and S. Chavez-Cerda, Opt. Lett. 29, 430 (2004). [CrossRef]
  9. M. A. Bandres and J. C. Gutierrez-Vega, Opt. Lett. 29, 2213 (2004). [CrossRef]
  10. I. Białynicki-Birula and Z. Białynicka-Birula, Opt. Commun. 264, 342 (2006). [CrossRef]
  11. A. April, Opt. Lett. 33, 1392 (2008). [CrossRef]
  12. W. Nasalski, Phys. Rev. E 74, 056613 (2006). [CrossRef]
  13. J. N. Brittingham, J. Appl. Phys. 54, 1179 (1983). [CrossRef]
  14. P. A. Belanger, J. Opt. Soc. Am. A 1, 723 (1984). [CrossRef]
  15. A. Sezginer, J. Appl. Phys. 57, 678 (1985). [CrossRef]
  16. R. W. Ziolkowski, J. Math. Phys. 26, 861 (1985).
  17. P. Hillion, J. Appl. Phys. 60, 2981 (1986). [CrossRef]
  18. H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-motion on the Basis of Maxwell’s Equations (Cambridge University, 1915).
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  20. J. Enderlein and F. Pampaloni, J. Opt. Soc. Am. A 21, 1553 (2004). [CrossRef]
  21. E. Zauderer, J. Opt. Soc. Am. A 3, 465 (1986). [CrossRef]
  22. D. G. Hall, Opt. Lett. 21, 9 (1996). [CrossRef]
  23. W. Szabelak and W. Nasalski, J. Phys. B 44, 215403(2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited