OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 6 — Mar. 15, 2013
  • pp: 863–865

Tunable silicon photonics directional coupler driven by a transverse temperature gradient

Piero Orlandi, Francesco Morichetti, Michael John Strain, Marc Sorel, Andrea Melloni, and Paolo Bassi  »View Author Affiliations

Optics Letters, Vol. 38, Issue 6, pp. 863-865 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact directional coupler fabricated on a silicon photonic platform is presented, with a power-splitting ratio that can be tuned through a transverse temperature gradient induced by a laterally shifted integrated heater. The tuning mechanism exploits the thermally induced phase velocity mismatch between the coupled modes of the silicon waveguides. The positions of the integrated heater and the waveguide design are optimized to maximize the tuning range and to reduce electric power consumption. Asynchronous devices with an intrinsic phase mismatch are demonstrated to be more efficient, providing a tunable coupled power from 0.7 to 0.01 with 36 mW maximum power dissipation.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.6840) Materials : Thermo-optical materials

ToC Category:
Integrated Optics

Original Manuscript: December 26, 2012
Revised Manuscript: February 6, 2013
Manuscript Accepted: February 6, 2013
Published: March 11, 2013

Piero Orlandi, Francesco Morichetti, Michael John Strain, Marc Sorel, Andrea Melloni, and Paolo Bassi, "Tunable silicon photonics directional coupler driven by a transverse temperature gradient," Opt. Lett. 38, 863-865 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. L. R. Lira, C. B. Poitras, and M. Lipson, Opt. Express 19, 20115 (2011). [CrossRef]
  2. P. Orlandi, C. Ferrari, M. J. Strain, A. Canciamilla, F. Morichetti, M. Sorel, P. Bassi, and A. Melloni, Opt. Lett. 37, 3669 (2012). [CrossRef]
  3. M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, J. Lightwave Technol. 27, 2105 (2009). [CrossRef]
  4. E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010). [CrossRef]
  5. L. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, Opt. Express 18, 23079 (2010). [CrossRef]
  6. H. Kogelnik and R. V. Schmidt, IEEE J. Quantum Electron. 12, 396 (1976). [CrossRef]
  7. Y. Silberberg, P. Perlmutter, and J. E. Baran, Appl. Phys. Lett. 51, 1230 (1987). [CrossRef]
  8. J. Leuthold and C. H. Joyner, J. Lightwave Technol. 19, 700 (2001). [CrossRef]
  9. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010). [CrossRef]
  10. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), p. 614.
  11. O. Schwelb, J. Lightwave Technol. 22, 1380 (2004). [CrossRef]
  12. V. M. N. Passaro, F. Magno, and A. V. Tsarev, Opt. Express 13, 3429 (2005). [CrossRef]
  13. A. H. Atabaki, E. S. Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, Opt. Express 18, 18312 (2010). [CrossRef]
  14. G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited