OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 6 — Mar. 15, 2013
  • pp: 941–943

Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics

B. Rangarajan, A. Y. Kovalgin, K. Wörhoff, and J. Schmitz  »View Author Affiliations

Optics Letters, Vol. 38, Issue 6, pp. 941-943 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The growth of silicon oxynitride thin films applying remote inductively coupled, plasma-enhanced chemical vapor deposition is optimized toward high optical quality at a deposition temperature as low as 150°C. Propagation losses of 0.5±0.05dB/cm, 1.6±0.2dB/cm, and 0.6±0.06dB/cm are measured on as-deposited waveguides for wavelengths of 1300, 1550, and 1600 nm, respectively. Films were deposited onto a 0.25 μm technology mixed-signal CMOS chip to show the application perspective for three-dimensional integrated optoelectronic chips.

© 2013 Optical Society of America

OCIS Codes
(160.3130) Materials : Integrated optics materials
(250.0250) Optoelectronics : Optoelectronics

ToC Category:

Original Manuscript: January 18, 2013
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 8, 2013
Published: March 13, 2013

B. Rangarajan, A. Y. Kovalgin, K. Wörhoff, and J. Schmitz, "Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics," Opt. Lett. 38, 941-943 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. M. Denisse, K. Z. Troost, F. H. P. M. Habraken, and W. F. van der Weg, J. Appl. Phys. 60, 2536 (1986). [CrossRef]
  2. A. E. T. Kuiper, S. W. Koo, F. H. P. M. Habraken, and Y. Tamminga, J. Vac. Sci. Technol. B 1, 62 (1983). [CrossRef]
  3. J. Aarnio, P. Heimala, M. Del Giudice, and F. Bruno, Electron. Lett. 27, 2317 (1991). [CrossRef]
  4. M. Fadel, M. Bülters, M. Niemand, E. Voges, and P. M. Krummrich, J. Lightwave Technol. 27, 698 (2009). [CrossRef]
  5. F. Bruno, M. del Guidice, R. Recca, and F. Testa, Appl. Opt. 30, 4560 (1991). [CrossRef]
  6. A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, Opt. Lett. 28, 1567 (2003). [CrossRef]
  7. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000). [CrossRef]
  8. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, Appl. Phys. Lett. 94, 141108 (2009). [CrossRef]
  9. P. Koonath and B. Jalali, Opt. Express 15, 12686 (2007). [CrossRef]
  10. D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, and J. Michel, Opt. Express 15, 3916 (2007). [CrossRef]
  11. K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, Lab Chip 9, 1261 (2009). [CrossRef]
  12. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, Biomed. Opt. Express 1, 176 (2010). [CrossRef]
  13. A. Boogaard, A. Y. Kovalgin, I. Brunets, A. A. I. Aarnink, J. Holleman, R. A. M. Wolters, and J. Schmitz, Surf. Coat. Technol. 201, 8976 (2007). [CrossRef]
  14. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007), pp. 170–172.
  15. J. Schmitz, Nucl. Instrum. Methods A 576, 142 (2007). [CrossRef]
  16. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, Opt. Express 16, 20809 (2008). [CrossRef]
  17. S. Zhu, G. Q. Lo, and D. L. Kwong, Opt. Express 18, 25283 (2010). [CrossRef]
  18. G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, Opt. Lett. 21, 2002 (1996). [CrossRef]
  19. X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong, Nucl. Instrum. Methods A 581, 485 (2007). [CrossRef]
  20. J. Lu, A. Y. Kovalgin, K. H. M. van der Werf, R. E. I. Schropp, and J. Schmitz, IEEE Trans. Electron Devices 58, 2014 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited