OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 6 — Mar. 15, 2013
  • pp: 944–946

Ultrawide-range four-wave mixing in Raman distributed-feedback fiber lasers

Jindan Shi, Shaif-ul Alam, and Morten Ibsen  »View Author Affiliations


Optics Letters, Vol. 38, Issue 6, pp. 944-946 (2013)
http://dx.doi.org/10.1364/OL.38.000944


View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report ultrawide-range and highly efficient wavelength conversion by exploiting four-wave mixing (FWM) in Raman distributed-feedback (R-DFB) fiber lasers. The lasers are 30 cm long center π phase-shifted DFB gratings UV written in commercially available germano-silica (Ge/Si) single-mode fibers (PS980 from Fibercore Ltd., and UHNA4 from Nufern). The R-DFB lasing signal acts as a pump wave for the FWM process within the DFB cavity, and the obtained FWM conversion efficiency is around 25dB with a maximum wavelength conversion range of 112 nm.

© 2013 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 21, 2013
Revised Manuscript: February 11, 2013
Manuscript Accepted: February 12, 2013
Published: March 13, 2013

Citation
Jindan Shi, Shaif-ul Alam, and Morten Ibsen, "Ultrawide-range four-wave mixing in Raman distributed-feedback fiber lasers," Opt. Lett. 38, 944-946 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-6-944


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  2. J. Minch, C. S. Chang, and S. L. Chuang, IEEE Photon. Technol. Lett. 4, 69 (1992). [CrossRef]
  3. J. Minch, C. S. Chang, and S. L. Chuang, Appl. Phys. Lett. 70, 1360 (1997). [CrossRef]
  4. A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010). [CrossRef]
  5. H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, IEEE J. Quantum Electron. 33, 2002 (1997). [CrossRef]
  6. J. Shi, S.-u. Alam, and M. Ibsen, Opt. Lett. 37, 1544 (2012). [CrossRef]
  7. J. Shi, S.-u. Alam, and M. Ibsen, Opt. Express 20, 5082 (2012). [CrossRef]
  8. Z. Qingsheng, in Antennas and Propagation Society International Symposium (IEEE, 1998), pp. 1060–1063.
  9. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998). [CrossRef]
  10. W. H. Loh, B. N. Samson, and J. P. de. Sandro, Appl. Phys. Lett. 69, 3773 (1996). [CrossRef]
  11. I. V. Kabakova, T. Walsh, C. M. de Sterke, and B. J. Eggleton, J. Opt. Soc. Am. B 27, 1343 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited