OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 6 — Mar. 15, 2013
  • pp: 989–991

Flat-top resonant reflectors with sharply delimited angular spectra: an application of the Rayleigh anomaly

Robert Magnusson  »View Author Affiliations

Optics Letters, Vol. 38, Issue 6, pp. 989-991 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce the concept of Rayleigh reflectors where extremely sharp angular spectra with unity reflectance are obtained across considerable angular extents. Enabling the device is a rapid, high-efficiency transition from an evanescent to a propagating first-order substrate wave occurring at the Rayleigh angle. A high-index nanolayer located adjacent to the substrate is seen to critically affect the resulting spectra. Away from the Rayleigh anomaly, the device is a basic guided-mode resonance (GMR) high reflector. Hence, this device connects the fundamental concepts of GMR and the Rayleigh anomaly with interesting possible applications, including filters and couplers.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.5750) Optical devices : Resonators
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: January 22, 2013
Revised Manuscript: February 20, 2013
Manuscript Accepted: February 20, 2013
Published: March 14, 2013

Robert Magnusson, "Flat-top resonant reflectors with sharply delimited angular spectra: an application of the Rayleigh anomaly," Opt. Lett. 38, 989-991 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Lord Rayleigh, Proc. R. Soc. Lond. A 79, 399 (1907). [CrossRef]
  2. J. E. Stewart and W. S. Gallaway, Appl. Opt. 1, 421 (1962). [CrossRef]
  3. P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979). [CrossRef]
  4. L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985). [CrossRef]
  5. I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989). [CrossRef]
  6. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985). [CrossRef]
  7. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993). [CrossRef]
  8. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004). [CrossRef]
  9. R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011). [CrossRef]
  10. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995). [CrossRef]
  11. M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011). [CrossRef]
  12. L. Shah, R. A. Sims, P. Kadwani, C. C. C. Willis, J. B. Bradford, A. Pung, M. K. Poutous, E. G. Johnson, and M. Richardson, Opt. Express 20, 20558 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited