OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 7 — Apr. 1, 2013
  • pp: 1043–1045

Double pass, common path method for arbitrary polarization control using a ferroelectric liquid crystal spatial light modulator

James H. Clegg and Mark A. A. Neil  »View Author Affiliations

Optics Letters, Vol. 38, Issue 7, pp. 1043-1045 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for arbitrary control of the polarization of a light beam. Our method uses two holograms on a binary ferroelectric liquid crystal spatial light modulator (FLCSLM), and so has the potential to allow polarization state switching at kilohertz rates. Unlike previous methods that achieve polarization control using FLCSLMs, our method is common path and requires only the simplest optical components. For this reason, the method is very easy to setup, align, and maintain. In addition, it has the ability to modulate unpolarized input light. We demonstrate the formation of radially, azimuthally, and circularly polarized beams by imaging their focal spots formed at low numerical aperture.

© 2013 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

Original Manuscript: December 19, 2012
Manuscript Accepted: February 6, 2013
Published: March 20, 2013

James H. Clegg and Mark A. A. Neil, "Double pass, common path method for arbitrary polarization control using a ferroelectric liquid crystal spatial light modulator," Opt. Lett. 38, 1043-1045 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009). [CrossRef]
  2. Q. Zhan, Opt. Express 12, 3377 (2004). [CrossRef]
  3. M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007). [CrossRef]
  4. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001). [CrossRef]
  5. K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005). [CrossRef]
  6. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007). [CrossRef]
  7. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, Opt. Express 20, 364 (2012). [CrossRef]
  8. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, Opt. Express 20, 14015 (2012). [CrossRef]
  9. M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000). [CrossRef]
  10. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, Opt. Lett. 27, 1929 (2002). [CrossRef]
  11. B. R. Boruah and M. A. A. Neil, Rev. Sci. Instrum. 80, 13705 (2009). [CrossRef]
  12. W.-H. Lee, in Progress in Optics, E. Wolf, ed. (Elsevier, 1978), p. 119232.
  13. S. Warr and R. Mears, Electron. Lett. 31, 714716 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited