OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 7 — Apr. 1, 2013
  • pp: 1113–1115

Mode locking at terahertz frequencies using a distributed Bragg reflector laser with a sampled grating

Lianping Hou, Mohsin Haji, and John H. Marsh  »View Author Affiliations

Optics Letters, Vol. 38, Issue 7, pp. 1113-1115 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a highly reproducible method of producing terahertz (THz) optical pulses using a class of mode-locked AlGaInAs/InP laser operating in the 1.55 μm wavelength range. The device uses a sample grating distributed Bragg reflector to provide strong frequency selectivity at the mode-locked frequency while the distributed reflectors relax the fabrication tolerances and ensure the cavity can self adjust to being an integral number of mode-locked periods in length. The measured devices provide nearly transform-limited pulse trains at 640 GHz or 1.28 THz with a high degree of controllability and operate with consistent performance over a wide range of drive conditions. Being low cost and compact sources of THz radiation, these lasers will open up many applications, including systems for high-speed optical communication and THz imaging.

© 2013 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 1, 2013
Revised Manuscript: February 28, 2013
Manuscript Accepted: February 28, 2013
Published: March 25, 2013

Lianping Hou, Mohsin Haji, and John H. Marsh, "Mode locking at terahertz frequencies using a distributed Bragg reflector laser with a sampled grating," Opt. Lett. 38, 1113-1115 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. K. Ostmann and T. Nagatsuma, J. Infrared Milli. Terahz. Waves 32, 143 (2011). [CrossRef]
  2. T. Nagatsuma, H. Ito, and T. Ishibashi, Laser Photon. Rev. 3, 123 (2009). [CrossRef]
  3. L. Wang, X. S. Chen, W. D. Hu, and W. Liu, IEEE J. Sel. Top. Quantum Electron. 19, 8400507 (2013). [CrossRef]
  4. S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron. 32, 1211 (1996). [CrossRef]
  5. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002). [CrossRef]
  6. L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, IEEE Photon. Technol. Lett. 22, 1503 (2010). [CrossRef]
  7. L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, IEEE Photon. Technol. Lett. 21, 1731 (2009). [CrossRef]
  8. T. Nakura and Y. Nakano, IEICE Trans. Electron. E83-C, 488 (2000).
  9. J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, Semicond. Sci. Technol. 20, 1149 (2005). [CrossRef]
  10. U. Bandelow, R. Mindaugas, A. Vladimirov, B. Hüttl, and R. Kaiser, Opt. Quantum Electron. 38, 495 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited