OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 7 — Apr. 1, 2013
  • pp: 1119–1121

Exact surface-plasmon polariton solutions at a lossy interface

Andreas Norrman, Tero Setälä, and Ari T. Friberg  »View Author Affiliations

Optics Letters, Vol. 38, Issue 7, pp. 1119-1121 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Making use of a rigorous electromagnetic treatment, we demonstrate that the approximate results that are customarily employed for the analysis of a plasmon field at a metal/dielectric boundary are incorrect even in some situations in which they are supposed to hold. We show further that a new type of surface-plasmon solution exists that does not follow from the standard approximate analysis. Energy-flow considerations indicate that the new polariton is a backward-propagating surface wave, as encountered in manmade structures. Our results are likely to find applications in metal/semiconductor and metamaterial plasmonics.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Surface Plasmons

Original Manuscript: February 8, 2013
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 25, 2013
Published: March 26, 2013

Andreas Norrman, Tero Setälä, and Ari T. Friberg, "Exact surface-plasmon polariton solutions at a lossy interface," Opt. Lett. 38, 1119-1121 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Ritchie, Phys. Rev. 106, 874 (1957). [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  4. M. I. Stockman, Opt. Express 19, 22029 (2011). [CrossRef]
  5. E. N. Economou, Phys. Rev. 182, 539 (1969). [CrossRef]
  6. R. Ruppin, Phys. Lett. A 277, 61 (2000). [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef]
  8. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005). [CrossRef]
  9. J. Zhang, L. Zhang, and W. Xu, J. Phys. D 45, 113001 (2012). [CrossRef]
  10. J. Yang, G. J. Brown, M. Dutta, and M. A. Stroscio, J. Appl. Phys. 98, 043517 (2005). [CrossRef]
  11. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Phys. Rev. B 84, 035128 (2011). [CrossRef]
  12. A. Boltasseva and H. A. Atwater, Science 331, 290 (2011). [CrossRef]
  13. A. Norrman, T. Setälä, and A. T. Friberg, J. Opt. Soc. Am. A 28, 391 (2011). [CrossRef]
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).
  15. S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 91, 214102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited