OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 7 — Apr. 1, 2013
  • pp: 1158–1160

Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal

Akifumi Ogiwara, Minoru Watanabe, and Retsu Moriwaki  »View Author Affiliations

Optics Letters, Vol. 38, Issue 7, pp. 1158-1160 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Grating devices using photosensitive organic materials play an important role in the development of optical and optoelectronic systems. High diffraction efficiency and polarization dependence achieved in a holographic polymer-dispersed liquid crystal (HPDLC) grating are expected to provide polarization controllable optical devices, such as the holographic memory for optically reconfigurable gate arrays (ORGAs). However, the optical property is affected by the thermal modulation around the transition temperature (Tni) that the liquid crystal (LC) changes from nematic to isotropic phases. The temperature dependence of the diffraction efficiency in HPDLC grating is discussed with two types of LC composites comprised of isotropic and LC diacrylate monomers. The holographic memory formed by the LC and LC diacrylate monomer performs precise reconstruction of the context information for ORGAs at high temperatures more than 150°C.

© 2013 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers

ToC Category:

Original Manuscript: January 28, 2013
Revised Manuscript: February 24, 2013
Manuscript Accepted: February 26, 2013
Published: April 1, 2013

Akifumi Ogiwara, Minoru Watanabe, and Retsu Moriwaki, "Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal," Opt. Lett. 38, 1158-1160 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Butler and M. S. Malcuit, Opt. Lett. 25, 420 (2000). [CrossRef]
  2. M. E. Holmes and M. S. Malcuit, Phys. Rev. E 65, 066603 (2002). [CrossRef]
  3. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004). [CrossRef]
  4. J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).
  5. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, Appl. Opt. 49, 4255 (2010). [CrossRef]
  6. A. Ogiwara and M. Watanabe, Appl. Opt. 51, 5168 (2012). [CrossRef]
  7. A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, Appl. Opt. 41, 4585 (2002). [CrossRef]
  8. A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, Opt. Commun. 241, 23 (2004). [CrossRef]
  9. I. D. Olenik, M. Fally, and M. A. Ellabban, Phys. Rev. E 74, 021707 (2006). [CrossRef]
  10. A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, Appl. Opt. 49, 4633 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited