OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 8 — Apr. 15, 2013
  • pp: 1343–1345

Theoretical model for angular grating-based integrated optical vortex beam emitters

Jiangbo Zhu, Xinlun Cai, Yujie Chen, and Siyuan Yu  »View Author Affiliations

Optics Letters, Vol. 38, Issue 8, pp. 1343-1345 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theoretical model for the recently reported integrated optical vortex beam emitters that incorporate angular gratings in microring resonators. Using azimuthally polarized dipole oscillators to represent emissions scattered from the grating elements that are located along the inner wall of the ring waveguide, we obtain expressions for far-field components under the paraxial approximation. The results show that the emission is of the form of cylindrical vector Bessel beams with exactly defined optical orbital angular momentum, and can have azimuthal, radial, and longitudinal field components after propagation. The calculation results for field distributions in both near and far zone agree well with the experimental results.

© 2013 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(230.3120) Optical devices : Integrated optics devices
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: January 24, 2013
Revised Manuscript: March 16, 2013
Manuscript Accepted: March 22, 2013
Published: April 12, 2013

Jiangbo Zhu, Xinlun Cai, Yujie Chen, and Siyuan Yu, "Theoretical model for angular grating-based integrated optical vortex beam emitters," Opt. Lett. 38, 1343-1345 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992). [CrossRef]
  2. G. Molina-Terriza, J. P. Torres, and L. Torner, Nat. Phys. 3, 305 (2007). [CrossRef]
  3. M. W. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. P. Woerdman, Opt. Commun. 112, 321 (1994). [CrossRef]
  4. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. White, Opt. Lett. 17, 221 (1992). [CrossRef]
  5. C. R. Doerr and L. L. Buhl, Opt. Lett. 36, 1209 (2011). [CrossRef]
  6. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012). [CrossRef]
  7. A. R. Von Hippel, Dielectrics and Waves (Wiley, 1954).
  8. D. G. Hall, Opt. Lett. 21, 9 (1996). [CrossRef]
  9. P. L. Greene and D. G. Hall, J. Opt. Soc. Am. A 13, 962 (1996). [CrossRef]
  10. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009). [CrossRef]
  11. M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004). [CrossRef]
  12. I. Freund, Opt. Commun. 201, 251 (2002). [CrossRef]
  13. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 53601 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited