OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 9 — May. 1, 2013
  • pp: 1407–1409

Negative refraction of a partially coherent electromagnetic beam

Mayukh Lahiri and Emil Wolf  »View Author Affiliations

Optics Letters, Vol. 38, Issue 9, pp. 1407-1409 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theory of usual (positive) refraction of partially coherent electromagnetic beams has been developed recently. In this Letter, we discuss the theory of negative refraction of a partially coherent electromagnetic beam. We show that negative refraction can produce change in spatial coherence of such a beam.

© 2013 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(120.5710) Instrumentation, measurement, and metrology : Refraction

ToC Category:
Coherence and Statistical Optics

Original Manuscript: January 8, 2013
Revised Manuscript: February 28, 2013
Manuscript Accepted: March 5, 2013
Published: April 24, 2013

Mayukh Lahiri and Emil Wolf, "Negative refraction of a partially coherent electromagnetic beam," Opt. Lett. 38, 1407-1409 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Institute of Physics, 2005).
  3. A list of related important references can be found in [15].
  4. Z. Tong and O. Korotkova, Opt. Lett. 35, 175 (2010). [CrossRef]
  5. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2004).
  6. M. Lahiri and E. Wolf, Phys. Rev. A 86, 043815 (2012). [CrossRef]
  7. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  8. Another definition of the degree of coherence of electromagnetic beams has been proposed [16]. For our purpose, it is immaterial which of the definitions is used.
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  10. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, J. Opt. A 3, 1 (2001). [CrossRef]
  11. T. Shirai, O. Korotkova, and E. Wolf, J. Opt. A 7, 232 (2005). [CrossRef]
  12. O. Korotkova, M. Salem, and E. Wolf, Opt. Commun. 233, 225 (2004). [CrossRef]
  13. H. Roychowdhury and O. Korotkova, Opt. Commun. 249, 379 (2005). [CrossRef]
  14. F. Gori, M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, J. Opt. Soc. Am. A 25, 1016 (2008). [CrossRef]
  15. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004). [CrossRef]
  16. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited