OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 9 — May. 1, 2013
  • pp: 1419–1421

Experimental demonstration of superluminal space-to-time mapping in long period gratings

Reza Ashrafi, Ming Li, Nezih Belhadj, Mansour Dastmalchi, Sophie LaRochelle, and José Azaña  »View Author Affiliations

Optics Letters, Vol. 38, Issue 9, pp. 1419-1421 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate a superluminal space-to-time mapping process in grating-assisted (GA) codirectional coupling devices, particularly fiber long period gratings (LPGs). Through this process, the grating complex (amplitude and phase) apodization profile is directly mapped into the device’s temporal impulse response. In contrast to GA counterdirectional couplers, e.g., Bragg gratings, this mapping occurs with a space-to-time scaling factor that is much higher than the propagation speed of light in vacuum. This phenomenon has been used for synthesizing customized complex optical pulse data sequences with femtosecond features (3.5Tbit/s data rate) using readily feasible fiber LPG designs, e.g., with subcentimeter resolutions.

© 2013 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(200.4560) Optics in computing : Optical data processing
(230.1150) Optical devices : All-optical devices
(320.5540) Ultrafast optics : Pulse shaping
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 11, 2013
Revised Manuscript: March 23, 2013
Manuscript Accepted: March 24, 2013
Published: April 24, 2013

Reza Ashrafi, Ming Li, Nezih Belhadj, Mansour Dastmalchi, Sophie LaRochelle, and José Azaña, "Experimental demonstration of superluminal space-to-time mapping in long period gratings," Opt. Lett. 38, 1419-1421 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1992 (2008). [CrossRef]
  2. L. M. Rivas, M. J. Strain, D. Duchesne, A. Carballar, M. Sorel, R. Morandotti, and J. Azaña, Opt. Lett. 33, 2425 (2008). [CrossRef]
  3. J. Azaña, IEEE Photon. J. 2, 359 (2010). [CrossRef]
  4. D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001). [CrossRef]
  5. H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).
  6. J. Azaña and L. R. Chen, J. Opt. Soc. Am. B 19, 2758 (2002). [CrossRef]
  7. R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, Opt. Express 21, 6249 (2013). [CrossRef]
  8. M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, Meas. Sci. Technol. 22, 015201 (2011). [CrossRef]
  9. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995). [CrossRef]
  10. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997). [CrossRef]
  11. M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, J. Lightwave Technol. 30, 1931 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited