OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 9 — May. 1, 2013
  • pp: 1452–1454

Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe

Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. V. Nepomnyashchii, A. G. Savchuk, A. A. Ionin, S. I. Kudryashov, and S. V. Makarov  »View Author Affiliations

Optics Letters, Vol. 38, Issue 9, pp. 1452-1454 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Separate nanoholes with the minimum size down to 35 nm (λ/15) and nanohole arrays with the hole size about 100 nm (λ/5) were fabricated in a 50 nm optically “thick” Au/Pd film, using single 532 nm pump nanosecond laser pulses focused to diffraction-limited spots by a specially designed apertureless dielectric fiber probe. Nanohole fabrication in the metallic film was found to result from lateral heat diffusion and center-symmetrical lateral expulsion of the melt by its vapor recoil pressure. The optimized apertureless dielectric microprobe was demonstrated to enable laser fabrication of deep through nanoholes.

© 2013 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(350.3390) Other areas of optics : Laser materials processing
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Laser Materials Processing

Original Manuscript: March 11, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: March 29, 2013
Published: April 25, 2013

Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. V. Nepomnyashchii, A. G. Savchuk, A. A. Ionin, S. I. Kudryashov, and S. V. Makarov, "Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe," Opt. Lett. 38, 1452-1454 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007). [CrossRef]
  2. T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010). [CrossRef]
  3. S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Lieberman, and H. Terkel, Opt. Lett. 24, 914 (1999). [CrossRef]
  4. A. A. Gorbunov and W. Pompe, Phys. Status Solidi A 145, 333 (1994). [CrossRef]
  5. M. H. Hong, S. M. Huang, B. S. Lukyanchuk, and T. C. Chong, Sens. Actuators A 108, 69 (2003). [CrossRef]
  6. A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003). [CrossRef]
  7. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 403 (2013).
  8. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chihkov, Appl. Phys. A 77, 229 (2003).
  9. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. Lett. 94, 266 (2011). [CrossRef]
  10. F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004). [CrossRef]
  11. G. Wysocki, J. Heitz, and D. Bäuerle, Appl. Phys. Lett. 84, 2025 (2004). [CrossRef]
  12. S. Yakunin and J. Heitz, J. Laser Micro/Nanoeng. 6, 180 (2011). [CrossRef]
  13. J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, Proc. SPIE 7131, 71311W (2009). [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).
  15. D. Baurle, Laser Processing and Chemistry (Springer, 2011).
  16. The thermal conductivity coefficient of Au κ(300  K)=317  Wm−1 K−1 [15] decreases by 5.3 times upon its alloying with Pd (20 wt. %), while at the Au melting temperature Tmelt,Au≈1337  K such reduction occurs by 2.5 times. Moreover, due to phonon scattering on its nanocrystallites, similar 50 nm thick Au film on a quartz substrate is known to demonstrate twice-lower thermal conductivity. As a result, for the weak temperature dependences of the Au heat capacity (Cp≈0.13  J/(gK)) [15] and mass density (ρ≈17.3  g/cm3), its thermal diffusivity χ=κ/(ρCp)) decreases overall by 5 (0.28  cm2/s) or 10.6 (0.13  cm2/s) times at 1337 or 300 K, respectively. Hence, over the 5 ns laser pulse the molten Au/Pd film provides heat conduction over the characteristic 1/e length σT≈1.55  μm.
  17. C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7, 3 (1978). [CrossRef]
  18. G. Langer, J. Hartmann, and M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997). [CrossRef]
  19. G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, Appl. Phys. A. 80, 659 (2005). [CrossRef]
  20. E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, Appl. Phys. A. 58, 129 (1994). [CrossRef]
  21. I. S. Grigoriev and E. Z. Melikhov, Handbook of Physical Quantities (CRC Press, 1997).
  22. D. A. Willis and X. Xu, J. Heat Transfer 122, 763 (2000). [CrossRef]
  23. N. Seifert, G. Betz, and W. Husinsky, Appl. Surf. Sci. 103, 63 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited