OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 9 — May. 1, 2013
  • pp: 1500–1502

Unidirectional fiber optic sensor for angular acceleration measurement

Gunther Schlöffel and Friedrich Seiler  »View Author Affiliations

Optics Letters, Vol. 38, Issue 9, pp. 1500-1502 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A concept of a fiber optic sensor consisting of a light source, a fiber coil, and a two-beam interferometer measuring angular acceleration is described. The principle differs essentially from common fiber optic gyroscopes (FOGs) still exploiting the Sagnac effect but sending light of the monochromatic source only unidirectionally into the fiber coil. A change in the optical path length in the fiber coil due to the Sagnac effect maintains proportionality to angular acceleration and could be detected by means of a subsequent two-beam interferometer. The sensitivity of this approach is in contrast to common FOGs determined not only by the total surface area enclosed by the fiber turns but also by the characteristics of the particular interferometer used.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2800) Fiber optics and optical communications : Gyroscopes

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 6, 2013
Revised Manuscript: March 26, 2013
Manuscript Accepted: March 26, 2013
Published: April 26, 2013

Gunther Schlöffel and Friedrich Seiler, "Unidirectional fiber optic sensor for angular acceleration measurement," Opt. Lett. 38, 1500-1502 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913).
  2. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 1410 (1913).
  3. M. v. Laue, Ann. Phys. 367, 448 (1920). [CrossRef]
  4. A. Michelson, J. Phil. Mag. 8(48), 716 (1904). [CrossRef]
  5. E. Post, Rev. Mod. Phys. 39, 475 (1967). [CrossRef]
  6. R. Anderson, H. Bilger, and G. Stedman, Am. J. Phys. 62, 975 (1994). [CrossRef]
  7. A. Kersey and A. Dandridge, IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 137 (1990).
  8. B. Lee, Opt. Fiber Technol. 9, 57 (2003). [CrossRef]
  9. B. Culshaw, Opt. Photon. News 16(11), 24 (2005). [CrossRef]
  10. V. Vali and R. Shorthill, Appl. Opt. 15, 1099 (1976). [CrossRef]
  11. H. Lefèvre, Opt. Rev. 4, 20 (1997).
  12. G. Pavlath and H. Shaw, Appl. Opt. 21, 1752 (1982). [CrossRef]
  13. C. Doerr, K. Tamura, M. Shirasaki, H. Haus, and E. Ippen, Appl. Opt. 33, 8062 (1994). [CrossRef]
  14. R. Meyer, S. Ezekiel, D. Stowe, and V. Tekippe, Opt. Lett. 8, 644 (1983). [CrossRef]
  15. K. Ono, Y. Nishiura, and M. Nishikawa, Appl. Opt. 30, 1070 (1991). [CrossRef]
  16. L. Barker and R. Hollenbach, J. Appl. Phys. 43, 4669 (1972). [CrossRef]
  17. G. Smeets and A. George, J. Appl. Phys. 49, 1589 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited