OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 9 — May. 1, 2013
  • pp: 1527–1529

Directional single-mode emission from coupled whispering gallery resonators realized by using ZnS microbelts

Hai Zhu, Siu Fung Yu, Qi Jie Wang, Chong Xin Shan, and S. C. Su  »View Author Affiliations

Optics Letters, Vol. 38, Issue 9, pp. 1527-1529 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ring microcavities were formed by wrapping ZnS microbelts, which act as the waveguide and gain region of the microcavities on the surface of optical fibers. The ring microcavities with the formation of whispering gallery modes have lasing threshold lower (Q-factor higher) than that of the ZnS microbelts. The excitation of TM modes could also be suppressed by the ring geometries of ZnS microbelts. Furthermore, directional single-mode lasing was realized from a coupled asymmetric ring microcavity. The Vernier coupling effect and deformed geometry of the asymmetric ring microcavity were contributed to the stable single-mode operation and directional emission, respectively.

© 2013 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(230.4910) Optical devices : Oscillators

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 28, 2013
Revised Manuscript: March 12, 2013
Manuscript Accepted: March 22, 2013
Published: April 29, 2013

Hai Zhu, Siu Fung Yu, Qi Jie Wang, Chong Xin Shan, and S. C. Su, "Directional single-mode emission from coupled whispering gallery resonators realized by using ZnS microbelts," Opt. Lett. 38, 1527-1529 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. S. Li, M. Afzelius, J. Zetterberg, and M. Aldén, Rev. Sci. Instrum. 75, 3208 (2004). [CrossRef]
  2. L. Shang, L. Y. Liu, and L. Xu, Opt. Lett. 33, 1150 (2008). [CrossRef]
  3. G. Griffel, IEEE Photon. Technol. Lett. 12, 1642 (2000). [CrossRef]
  4. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011). [CrossRef]
  5. M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012). [CrossRef]
  6. K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004). [CrossRef]
  7. J. Valenta, D. Guennani, A. Manar, and B. Htjnerlage, Solid State Commun. 98, 6951996. [CrossRef]
  8. Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002). [CrossRef]
  9. http://wwwhome.math.utwente.nl/~hammer/oms.html .
  10. C. Goyal, R. L. Gallawa, and A. K. Ghatak, J. Lightwave Technol. 8, 768 (1990). [CrossRef]
  11. H. G. L. Schwefel, H. E. Türeci, A. D. Stone, and R. K. Chang, Optical Processes in Microcavities (World Scientific, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited