OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 9 — May. 1, 2013
  • pp: 1567–1569

Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses

Hua Cheng, Shuqi Chen, Ping Yu, Jianxiong Li, Li Deng, and Jianguo Tian  »View Author Affiliations

Optics Letters, Vol. 38, Issue 9, pp. 1567-1569 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a mid-IR highly tunable optical polarization converter composed of asymmetric graphene nanocrosses. It can convert linearly polarized light to circularly and elliptically polarized light or exhibit a giant optical activity at different wavelengths. The transmitted wavelength and polarization states can also be dynamically tuned by varying the Fermi energy of graphene, without reoptimizing and refabricating the nanostructures. This offers a further step in developing a controllable polarization converter.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

Original Manuscript: February 6, 2013
Revised Manuscript: March 20, 2013
Manuscript Accepted: April 3, 2013
Published: April 30, 2013

Hua Cheng, Shuqi Chen, Ping Yu, Jianxiong Li, Li Deng, and Jianguo Tian, "Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses," Opt. Lett. 38, 1567-1569 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Huang, Y. Zhou, and S. Wu, Opt. Express 15, 6414 (2007). [CrossRef]
  2. A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, Opt. Lett. 36, 1626 (2011). [CrossRef]
  3. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, Appl. Phys. Lett. 101, 023101 (2012). [CrossRef]
  4. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Nano Lett. 11, 4400 (2011). [CrossRef]
  5. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Opt. Lett. 36, 1653 (2011). [CrossRef]
  6. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, Nano Lett. 11, 3370 (2011). [CrossRef]
  7. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Nat. Nanotechnol. 6, 630 (2011). [CrossRef]
  8. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010). [CrossRef]
  9. S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, Phys. Rev. Lett. 108, 047401 (2012). [CrossRef]
  10. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. H. Koppens, and F. J. G. de Abajo, ACS Nano 6, 431 (2012). [CrossRef]
  11. F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839 (2009). [CrossRef]
  12. K. F. Mark, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett. 101, 196405 (2008). [CrossRef]
  13. COMSOL Multiphysics User’s Guide., Version 3.5 (Comsol AB, Brulington, Massachusetts, 2008).
  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). [CrossRef]
  15. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited