OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 1 — Jan. 1, 2014
  • pp: 104–107

Electro-optical processor for measuring displacement employing the Talbot and the nonsteady-state photo-electromotive force effects

P. Rodriguez-Montero, D. Sánchez-de-la-Llave, and S. Mansurova  »View Author Affiliations

Optics Letters, Vol. 39, Issue 1, pp. 104-107 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a device for measuring displacement based on the Talbot and the nonsteady photo-electromotive force effects. The proposed device does not require any numerical signal processing since its output signal is, in appropriate regions, linearly related to the measured displacement. The proposed system requires an illuminating field with a sinusoidal amplitude distribution and low fringe visibility. The dynamic range can be adjusted according to the illuminating field spatial period or wavelength. Displacements with an estimated resolution better than 10 μm in a dynamic range of 1.5 mm were detected using a sinusoidal amplitude grating with a period d=100μm.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(160.5140) Materials : Photoconductive materials
(120.1088) Instrumentation, measurement, and metrology : Adaptive interferometry

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: September 24, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 20, 2013
Published: December 20, 2013

P. Rodriguez-Montero, D. Sánchez-de-la-Llave, and S. Mansurova, "Electro-optical processor for measuring displacement employing the Talbot and the nonsteady-state photo-electromotive force effects," Opt. Lett. 39, 104-107 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Talbot, Philos. Mag. 9(56), 401 (1836). [CrossRef]
  2. L. Rayleigh, Philos. Mag. 11, 196 (1881).
  3. K. Patorski, Prog. Opt. 47, 1 (1989). [CrossRef]
  4. J. C. Bhattacharya, Appl. Opt. 28, 2600 (1989). [CrossRef]
  5. C. Shakher and A. J. Pramila Daniel, Appl. Opt. 33, 6068 (1994). [CrossRef]
  6. P. Singh, M. S. Faridi, C. Shakher, and R. S. Sirohi, Appl. Opt. 44, 1572 (2005). [CrossRef]
  7. S. Mirza and C. Shakher, Opt. Eng. 44, 013601 (2005). [CrossRef]
  8. J. Dhanotia and S. Prakash, Appl. Opt. 50, 1446 (2011). [CrossRef]
  9. D. Podanchuk, V. Kurashov, A. Goloborodko, V. Dańko, M. Kotov, and N. Goloborodko, Appl. Opt. 51, C125 (2012). [CrossRef]
  10. P. Chavel and T. C. Strand, Appl. Opt. 23, 862 (1984). [CrossRef]
  11. G. Schirripa Spagnolo and D. Ambrosini, Meas. Sci. Technol. 11, 77 (2000). [CrossRef]
  12. G. Schirripa Spagnolo, D. Ambrosini, and D. Paoletti, J. Opt. A 4, S376 (2002). [CrossRef]
  13. D. S. Metha, S. K. Dubey, C. Shakher, and M. Takeda, Appl. Opt. 45, 7602 (2006). [CrossRef]
  14. S. K. Dubey, D. S. Metha, A. Roy, and C. Shakher, Opt. Commun. 279, 13 (2007).
  15. P. Rodríguez-Montero, C. M. Gómez-Sarabia, and J. Ojeda-Castañeda, Appl. Opt. 47, 3778 (2008). [CrossRef]
  16. S. Stepanov, in Handbook of Advanced Electronic and Photonics Materials and Devices, H. S. Nalwa, ed. (Academic2001) Vol 2, pp. 205–272.
  17. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited