OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 1 — Jan. 1, 2014
  • pp: 13–16

Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications

Federico Lora Gonzalez, Daniel E. Morse, and Michael J. Gordon  »View Author Affiliations


Optics Letters, Vol. 39, Issue 1, pp. 13-16 (2014)
http://dx.doi.org/10.1364/OL.39.000013


View Full Text Article

Enhanced HTML    Acrobat PDF (428 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Moth-eye (ME) arrays with varying aspect ratios and profile heights were fabricated in Si using a general colloidal lithography and reactive ion etching technique. Antireflective (AR) properties of the arrays were rigorously assessed from the near to far infrared (λ=250μm) using transmission and reflection measurements via dispersive and Fourier transform infrared spectroscopy and modeled using an effective medium approximation (EMA). Infrared transmission of low aspect ratio structures (2) matched the EMA model, indicating that the most important factor for AR at higher wavelengths is structure height. High aspect ratio structures (>6) were highly transmissive (>90% of theoretical maximum) over a large bandwidth in the mid-infrared (20–50 μm). Specular reflectance, total transmission, and diffuse reflectance (DR) measurements indicate that ME structures do not reach the theoretical maximum at near-infrared wavelengths due to DR and forward scattering phenomena. Ultimately, correlating optical performance with feature geometry (pitch, profile, height, etc.) over multiple length scales allows intelligent design of ME structures for broadband applications.

© 2013 Optical Society of America

OCIS Codes
(290.5820) Scattering : Scattering measurements
(310.1210) Thin films : Antireflection coatings
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Scattering

History
Original Manuscript: October 30, 2013
Manuscript Accepted: November 13, 2013
Published: December 16, 2013

Citation
Federico Lora Gonzalez, Daniel E. Morse, and Michael J. Gordon, "Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications," Opt. Lett. 39, 13-16 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-1-13


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. F. Jones and P. Plassmann, IEEE Eng. Med. Biol. 21, 41 (2002). [CrossRef]
  2. G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, Opt. Express 17, 21118 (2009). [CrossRef]
  3. J. Lau, J. Fowler, T. Marriage, L. Page, J. Leong, E. Wishnow, R. Henry, E. Wollack, M. Halpern, D. Marsden, and G. Marden, Appl. Opt. 45, 3746 (2006). [CrossRef]
  4. T. Kamizuka, T. Miyata, S. Sako, H. Imada, T. Nakamura, K. Asano, M. Uchiyama, K. Okada, T. Wada, T. Nakagawa, T. Onaka, and I. Sakon, Proc. SPIE 8450, 845051 (2012). [CrossRef]
  5. S. Thiyagu, B. Devi, and Z. Pei, Nano Res. 4, 1136 (2011). [CrossRef]
  6. K. Arpin, A. Mihi, H. Johnson, A. Baca, J. Roger, J. Lews, and P. Braun, Adv. Mater. 22, 1084 (2010). [CrossRef]
  7. B. Frey, D. Leviton, and T. Madison, Proc. SPIE 6273, 62732J (2006). [CrossRef]
  8. H. Raut, V. Ganesh, A. Nair, and S. Ramakrishna, Energ. Environ. Sci. 4, 3779 (2011). [CrossRef]
  9. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Mater. Sci. Eng. R 69, 1 (2010). [CrossRef]
  10. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, Appl. Opt. 31, 4371 (1992). [CrossRef]
  11. D. H. Ko, J. R. Tumbleston, K. J. Henderson, L. E. Euliss, J. M. DeSimone, R. Lopez, and E. T. Samulski, Soft Matter 7, 6404 (2011). [CrossRef]
  12. P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, Opt. Express 21, 1 (2013). [CrossRef]
  13. G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008). [CrossRef]
  14. R. Parker and H. E. Townley, Nat. Nanotechnol. 2, 347 (2007). [CrossRef]
  15. Y. F. Huang and S. Chattopadhyay, J. Nanophoton. 7, 073594 (2013). [CrossRef]
  16. K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012). [CrossRef]
  17. A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Proc. SPIE 5184, 60 (2003). [CrossRef]
  18. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett. 9, 279 (2009). [CrossRef]
  19. K. Naniwae, M. Mori, T. Kondo, A. Suzuki, T. Kitano, S. Kamiyama, M. Iwaya, T. Takeuchi, and I. Akasaki, Proc. SPIE 8641, 86410G (2013). [CrossRef]
  20. M. Bardosova, M. E. Pemble, I. M. Povey, and R. H. Tredgold, Adv. Mater. 22, 3104 (2010). [CrossRef]
  21. S. Reculusa, P. Masse, and S. Ravaine, J. Colloid Interface Sci. 279, 3014 (2010).
  22. D. B. Nash, Appl. Opt. 25, 2427 (1986). [CrossRef]
  23. C. C. Katsidis and D. I. Siapkas, Appl. Opt. 41, 3978 (2002). [CrossRef]
  24. R. J. Collins and H. Y. Fan, Phys. Rev. 93, 674 (1954). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited