OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 1 — Jan. 1, 2014
  • pp: 178–181

Bulk plasmon polariton-gap soliton-induced transparency in one-dimensional Kerr-metamaterial superlattices

S. B. Cavalcanti, P. A. Brandão, A. Bruno-Alfonso, and L. E. Oliveira  »View Author Affiliations

Optics Letters, Vol. 39, Issue 1, pp. 178-181 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have performed a theoretical study of various arrangements of one-dimensional heterostructures composed by bilayers made of nondispersive (A)/dispersive linear (B) materials and illuminated by an obliquely incident electromagnetic wave, which are shown to exhibit a robust bulk-like plasmon-polariton gap for frequencies below the plasma frequency. The origin of this gap stems from the coupling between photonic and plasmonic modes that may be of a magnetic (electric) origin in a transversal electric (traversal magnetic) configuration yielding a plasmon-polariton mode. By substituting the nondispersive linear layer by a nonlinear Kerr layer, we have found that, for frequencies close to the edge of the plasmon-polariton gap, the transmission of a finite superlattice presents a multistable behavior and it switches from very low values to the maximum transparency at particular values of the incident power. At these frequencies, for those singular points where transmission becomes maximum, we find localized plasmon-polariton-gap solitons of various orders depending on the particular value of the incident power. Present results reveal, therefore, new gap plasmon-soliton solutions that are hybrid modes stemming from the resonant coupling between the incoming electromagnetic wave and the plasmonic modes of the dispersive material, leading to the transparency of a stack with nonlinear inclusions.

© 2013 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.1245) Materials : Artificially engineered materials

ToC Category:

Original Manuscript: October 22, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: November 29, 2013
Published: December 24, 2013

S. B. Cavalcanti, P. A. Brandão, A. Bruno-Alfonso, and L. E. Oliveira, "Bulk plasmon polariton-gap soliton-induced transparency in one-dimensional Kerr-metamaterial superlattices," Opt. Lett. 39, 178-181 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. N. I. Zheludev, 2010 Science 328, 582 (2010). [CrossRef]
  3. A. Fang, T. Koschny, and C. M. Soukoulis, J. Opt. 12, 024013 (2010). [CrossRef]
  4. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010). [CrossRef]
  5. A. Boltasseva and H. A. Atwater, Science 331, 290 (2011). [CrossRef]
  6. N. I. Zheludev, Opt. Photon. News 22(3), 30 (2011). [CrossRef]
  7. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]
  8. J. Li, L. Zhou, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 90, 083901 (2003). [CrossRef]
  9. H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, Appl. Phys. Lett. 83, 5386 (2003). [CrossRef]
  10. M. Liscidini and L. C. Andreani, Phys. Rev. E 73, 016613 (2006). [CrossRef]
  11. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, R. M. Osgood, D. L. Kwong, and C. W. Wong, Phys. Rev. Lett. 102, 203905 (2009). [CrossRef]
  12. J. Schilling, Nat. Photonics 5, 449 (2011). [CrossRef]
  13. E. Reyes-Gómez, D. Mogilevtsev, S. B. Cavalcanti, C. A. A. Carvalho, and L. E. Oliveira, Europhys. Lett. 88, 24002 (2009). [CrossRef]
  14. C. A. A. de Carvalho, S. B. Cavalcanti, E. Reyes-Gómez, and L. E. Oliveira, Phys. Rev. B 83, 081408(R) (2011). [CrossRef]
  15. E. Reyes-Gómez, A. Bruno-Alfonso, S. B. Cavalcanti, and L. E. Oliveira, Phys. Rev. B 85, 195110 (2012). [CrossRef]
  16. E. Reyes-Gómez, S. B. Cavalcanti, and L. E. Oliveira, Superlattices Microstruct. 64, 590 (2013). [CrossRef]
  17. Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys. 83, 247 (2011). [CrossRef]
  18. W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987). [CrossRef]
  19. W. Chen and D. L. Mills, Phys. Rev. B 36, 6269 (1987). [CrossRef]
  20. S. D. Gupta, J. Opt. Soc. Am. B 6, 1927 (1989). [CrossRef]
  21. R. S. Hedge and H. G. Winful, Microwave and Opt. Tech. Lett. 46, 528 (2005).
  22. R. S. Hedge and H. G. Winful, Opt. Lett. 30, 1852 (2005). [CrossRef]
  23. T. Peschel, P. Dannberg, U. Langbein, and F. Lederer, J. Opt. Soc. Am. B 5, 29 (1988). [CrossRef]
  24. U. Trutschel and F. Lederer, J. Opt. Soc. Am. B 5, 2530 (1988). [CrossRef]
  25. A thorough study of the effect of absorptive losses will be published elsewhere.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited