OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 2860–2863

Partial isometries, unitary operators, and complementary operators in polarization optics

Tiberiu Tudor  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 2860-2863 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that for nonnormal singular operators corresponding to the nonorthogonal polarizers, the unitary polar component is constituted by two partial isometries, one of them “active” and the other “hidden” or “mute.” For each such operator there exists a complementary one, corresponding also to a nonorthogonal polarizer, which has the same unitary polar component and whose partial isometries reverse their roles.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.5430) Physical optics : Polarization
(270.0270) Quantum optics : Quantum optics

ToC Category:
Physical Optics

Original Manuscript: March 4, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 31, 2014
Published: May 6, 2014

Tiberiu Tudor, "Partial isometries, unitary operators, and complementary operators in polarization optics," Opt. Lett. 39, 2860-2863 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Gil, Eur. Phys. J. Appl. Phys. 40, 1 (2007). [CrossRef]
  2. R. C. Jones, J. Opt. Soc. Am. 32, 486 (1942). [CrossRef]
  3. S. Pancharatnam, Proc. Indian Acad. Sci. A42, 86 (1955).
  4. S. N. Savenkov, O. I. Sydoruk, and R. S. Muttiah, Appl. Opt. 46, 6700 (2007). [CrossRef]
  5. S.-Y. Lu and R. A. Chipman, J. Opt. Soc. Am. A 11, 766 (1994). [CrossRef]
  6. M. V. Berry and M. R. Dennis, J. Opt. A 6, S24 (2004). [CrossRef]
  7. O. Sydoruk and S. N. Savenkov, J. Opt. 12, 035702 (2010). [CrossRef]
  8. T. Tudor, J. Opt. Soc. Am. A 23, 1513 (2006). [CrossRef]
  9. C. Whitney, J. Opt. Soc. Am. 61, 1207 (1971). [CrossRef]
  10. J. J. Gil and E. Bernabeu, Optik 76, 67 (1987).
  11. S.-Y. Lu and R. A. Chipman, J. Opt. Soc. Am. A 13, 1106 (1996). [CrossRef]
  12. S. N. Savenkov and O. I. Sydoruk, J. Opt. Soc. Am. A 22, 1447 (2005). [CrossRef]
  13. J. J. Gil, J. Opt. Soc. Am. A 30, 701 (2013). [CrossRef]
  14. E. B. Davies and J. T. Lewis, Commun. Math. Phys. 17, 239 (1970). [CrossRef]
  15. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, 1985).
  16. T. Kato, Perturbation Theory for Linear Operators (Springer, 1966).
  17. T. Tudor, J. Phys. A 36, 9577 (2003). [CrossRef]
  18. O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, Opt. Express 17, 15623 (2009). [CrossRef]
  19. W. M. de Muynck, J. Phys. A 31, 431 (1998). [CrossRef]
  20. P. Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement (Springer, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited