OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 2892–2895

Mode-hop-free photonic crystal laser fabricated by holographic exposure technology

Can Zhang, Baojun Wang, Song Liang, Hongliang Zhu, and Wei Wang  »View Author Affiliations


Optics Letters, Vol. 39, Issue 10, pp. 2892-2895 (2014)
http://dx.doi.org/10.1364/OL.39.002892


View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mode-hop-free single-mode laser with a two-dimensional photonic crystal was demonstrated. In the device, the photonic crystal was realized by double holographic exposure technology. This novel procedure simplifies the fabrication of such structures greatly. The design of a reverse junction in the photonic crystal layer induces a partial gain coupling into the laser, which could break the symmetry of the transmission spectrum and realize stable single-mode lasing of the laser. The fabricated device has a high single-mode stability and side-mode suppression ratio of over 45 dB without mode hop at a relatively wide injected current range. The measurement results indicate that the laser with a simple fabrication process is promising as a stable single-mode and high-power light source in optical communication systems.

© 2014 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(140.2020) Lasers and laser optics : Diode lasers
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Holography

History
Original Manuscript: January 30, 2014
Revised Manuscript: March 25, 2014
Manuscript Accepted: April 2, 2014
Published: May 8, 2014

Citation
Can Zhang, Baojun Wang, Song Liang, Hongliang Zhu, and Wei Wang, "Mode-hop-free photonic crystal laser fabricated by holographic exposure technology," Opt. Lett. 39, 2892-2895 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-10-2892


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996). [CrossRef]
  2. T. Baba, IEEE J. Sel. Top. Quantum Electron. 3, 808 (1997). [CrossRef]
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Express 3, 4 (1998). [CrossRef]
  4. S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000). [CrossRef]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999). [CrossRef]
  6. S. Noda, M. Yokoyama, M. Imada, C. Alongkarn, and M. Mochizuki, Science 293, 1123 (2001). [CrossRef]
  7. H. G. Park, H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004). [CrossRef]
  8. L. Lu, A. Mock, E. H. Hwang, J. O’Brien, and P. D. Dapkus, Opt. Lett. 34, 2646 (2009). [CrossRef]
  9. L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, Opt. Lett. 31, 1863 (2006). [CrossRef]
  10. T. D. Happ, M. Kamp, A. Forchel, J. L. Gentner, and L. Goldstein, Appl. Phys. Lett. 82, 4 (2003). [CrossRef]
  11. X. Checoury, P. Boucaud, J. M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, O. L. Legouezigou, F. Lelarge, F. Poingt, G.-H. Duan, S. Bonnefont, D. Mulin, J. Valentin, O. Gauthier-Lafaye, F. Lozes-Dupuy, and A. Talneau, IEEE J. Sel. Top. Quantum Electron. 11, 1180 (2005). [CrossRef]
  12. O. Gauthier-Lafaye, D. Mulin, S. Bonnefont, X. Checoury, J. M. Lourtioz, A. Talneau, and F. Lozes-Dupuy, IEEE Photon. Technol. Lett. 17, 1587 (2005). [CrossRef]
  13. I. Vurgaftman and J. R. Meyer, Appl. Phys. Lett. 78, 1475 (2001). [CrossRef]
  14. A. Sugitatsu and S. Noda, Electron. Lett. 39, 213 (2003). [CrossRef]
  15. G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, J. Vac. Sci. Technol. B 24, 2926 (2006). [CrossRef]
  16. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, Adv. Mater. 23, 147 (2011). [CrossRef]
  17. M. Nakamura, A. Yariv, H. W. Yen, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 22, 515 (1973). [CrossRef]
  18. H. Soda and H. Imai, IEEE J. Quantum Electron. 22, 637 (1986). [CrossRef]
  19. T. Makino and J. Glinski, IEEE J. Quantum Electron. 24, 1507 (1988). [CrossRef]
  20. T. Nakura and Y. Nakano, IEICE Trans. Electron. 83, 488 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited