OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 2951–2954

Continuous-wave, double-pass second-harmonic generation with 60% efficiency in a single MgO:PPSLT crystal

Matthias Stappel, Daniel Kolbe, and Jochen Walz  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 2951-2954 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a double-pass scheme for high-efficiency, high-power, second-harmonic generation (SHG) in a single MgO-doped periodically poled stoichiometric lithium tantalate (MgO:PPSLT) crystal. The device is pumped by a single-frequency, continuous-wave fiber amplifier laser system at a wavelength of 1091 nm. For the double-pass scheme, a conversion efficiency of 60% and a harmonic power of 12.8 W at a wavelength of 545.5 nm with a high beam quality of (M2<1.2) is achieved. Compared to single-pass SHG, a double-pass enhancement factor of more than two is observed at the highest fundamental pump power.

© 2014 Optical Society of America

OCIS Codes
(140.7300) Lasers and laser optics : Visible lasers
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 12, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 14, 2014
Published: May 12, 2014

Matthias Stappel, Daniel Kolbe, and Jochen Walz, "Continuous-wave, double-pass second-harmonic generation with 60% efficiency in a single MgO:PPSLT crystal," Opt. Lett. 39, 2951-2954 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, Opt. Express 17, 13711 (2009). [CrossRef]
  2. S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.
  3. K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.
  4. M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, Laser Phys. 23, 075103 (2013). [CrossRef]
  5. S. Sinha, D. S. Hum, K. E. Urbanek, Y.-W. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, J. Lightwave Technol. 26, 3866 (2008). [CrossRef]
  6. G. Samanta, S. Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lett. 35, 3513 (2010). [CrossRef]
  7. G. Imeshev, M. Proctor, and M. Fejer, Opt. Lett. 23, 165 (1998). [CrossRef]
  8. S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004). [CrossRef]
  9. T. Meier, B. Willke, and K. Danzmann, Opt. Lett. 35, 3742 (2010). [CrossRef]
  10. M. Stappel, D. Kolbe, and J. Walz, “Frequenzvervielfachende Kristallanordnung mit hohem Wirkungsgrad,” German patent pending10 2013 107 196.1 (July9, 2013).
  11. Molecular Technology (MolTech) GmbH, http://www.mt-berlin.com .
  12. G. D. Boyd and D. A. Kleinman, Appl. Opt. 39, 3597 (1968).
  13. J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971). [CrossRef]
  14. D. S. Hum and M. M. Fejer, C. R. Phys. 8, 180 (2007).
  15. V. A. Akulov, S. A. Babin, S. I. Kablukov, and K. S. Raspopin, Laser Phys. 21, 935 (2011). [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited