OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 2955–2958

3D reconstruction of external and internal surfaces of transparent objects from polarization state of highlights

Florence Drouet, Christophe Stolz, Olivier Laligant, and Olivier Aubreton  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 2955-2958 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A vision-based method is proposed to measure the 3D shape of external and internal surfaces (not accessible) of smooth transparent objects. Looking at the reflections of point sources on a specular surface with a polarimetric camera, we combine the measurements of two techniques: shape from distortion and shape from polarization. It permits us to recover the position and orientation of the specular surface for each detected point. The internal surface of transparent objects exhibiting as well a specular component, the same technique is used on the highlights coming from the back surface, taking into account the refraction by using polarimetric ray tracing.

© 2014 Optical Society of America

OCIS Codes
(150.6910) Machine vision : Three-dimensional sensing
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

Original Manuscript: February 25, 2014
Revised Manuscript: April 11, 2014
Manuscript Accepted: April 12, 2014
Published: May 12, 2014

Florence Drouet, Christophe Stolz, Olivier Laligant, and Olivier Aubreton, "3D reconstruction of external and internal surfaces of transparent objects from polarization state of highlights," Opt. Lett. 39, 2955-2958 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Ihrke, K. N. Kutulakos, H. P. A. Lensch, M. Magnor, and W. Heidrich, in STAR Eurographics (Eurographics Association, 2008).
  2. A. C. Sanderson, L. E. Weiss, and S. K. Nayar, IEEE Trans. Pattern Anal. Mach Intell. 10, 44 (1988).
  3. M. Tarini, H. P. A. Lensch, M. Goesele, and H.-P. Seidel, Graph. Models 67, 233 (2005).
  4. D. Miyazaki, M. Saito, Y. Sato, and K. Ikeuchi, J. Opt. Soc. Am. 19, 687 (2002). [CrossRef]
  5. M. Ferraton, C. Stolz, and F. Mériaudeau, Opt. Express 17, 21077 (2009). [CrossRef]
  6. N. J. W. Morris and K. N. Kutulakos, in IEEE ICCV (IEEE, 2007), pp. 1–8.
  7. G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar, in IEEE ICCV (IEEE, 2011), pp. 1180–1186.
  8. K. N. Kutulakos and E. Steger, Int. J. Comput. Vis. 76, 13 (2008).
  9. B. Trifonov, D. Bradley, and W. Heidrich, in Proceedings of the Eurographics Symposium on Rendering (Eurographics Association, 2006), pp. 51–60.
  10. M. B. Hullin, M. Fuchs, I. Ihrke, H.-P. Seidel, and H. P. A. Lensch, ACM Trans. Graph. 27, 87 (2008).
  11. M. Ben-Ezra and S. K. Nayar, in IEEE ICCV (IEEE, 2003), Vol. 2, pp. 1025–1032.
  12. S. Savarese and P. Perona, in ECCV (Springer, 2002), Vol. 2351, pp. 759–774.
  13. R. Longhurst, Optics, 3rd ed. (Addison-Wesley, 1973).
  14. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).
  15. C. Stolz, M. Ferraton, and F. Mériaudeau, Opt. Lett. 37, 4218 (2012). [CrossRef]
  16. G. Glaeser and H.-P. Schröcker, J. Geom. Graph. 4, 1 (2000).
  17. S. B. Howell, Astron. Soc. Pac. Conf. 101, 616 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited