OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 2971–2974

Third-order chromatic dispersion stabilizes Kerr frequency combs

Pedro Parra-Rivas, Damià Gomila, François Leo, Stéphane Coen, and Lendert Gelens  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 2971-2974 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (455 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using numerical simulations of an extended Lugiato–Lefever equation we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators, taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton.

© 2014 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.5750) Optical devices : Resonators

ToC Category:
Nonlinear Optics

Original Manuscript: February 27, 2014
Revised Manuscript: April 9, 2014
Manuscript Accepted: April 9, 2014
Published: May 12, 2014

Pedro Parra-Rivas, Damià Gomila, François Leo, Stéphane Coen, and Lendert Gelens, "Third-order chromatic dispersion stabilizes Kerr frequency combs," Opt. Lett. 39, 2971-2974 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002). [CrossRef]
  2. S. T. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 (2003). [CrossRef]
  3. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011). [CrossRef]
  4. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011). [CrossRef]
  5. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, Opt. Lett. 36, 3398 (2011). [CrossRef]
  6. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, Opt. Lett. 38, 37 (2013). [CrossRef]
  7. Y. K. Chembo and C. Menyuk, Phys. Rev. A 87, 053852 (2013). [CrossRef]
  8. F. Leo, S. Coen, P. Kockaertl, S.-P. Gorza, P. Emplit, and M. Haelterman, Nat. Photonics 4, 471 (2010). [CrossRef]
  9. F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, Opt. Express 21, 9180 (2013). [CrossRef]
  10. A. B. Matsko, W. Liang, A. A. Savchenkov, and L. Maleki, Opt. Lett. 38, 525 (2013). [CrossRef]
  11. I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. part II: case of anomalous dispersion,” arXiv:1308.2542 (2013).
  12. P. Parra-Rivas, D. Gomila, M. A. Matías, S. Coen, and L. Gelens, Phys. Rev. A 89, 043813 (2014). [CrossRef]
  13. M. Erkintalo and S. Coen, Opt. Lett. 39, 283 (2014). [CrossRef]
  14. L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, Phys. Rev. A 77, 033841 (2008). [CrossRef]
  15. M. Tlidi and L. Gelens, Opt. Lett. 35, 306 (2010). [CrossRef]
  16. C. Milián and D. Skryabin, Opt. Express 22, 3732 (2014). [CrossRef]
  17. L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209 (1987). [CrossRef]
  18. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, Opt. Lett. 36, 2845 (2011). [CrossRef]
  19. Y. Xu and S. Coen, “Experimental observation of the spontaneous breaking of the time-reversal symmetry in a synchronously-pumped passive Kerr resonator,” arXiv:1401.2972 (2014).
  20. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145 (2013). [CrossRef]
  21. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, Nat. Photonics 7, 597 (2013). [CrossRef]
  22. F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, Phys. Rev. Lett. 110, 104103 (2013). [CrossRef]
  23. J. K. Jang, S. G. Murdoch, S. Coen, and M. Erkintalo, CLEO/Europe, Munich, Germany, 2013, PD–B.7.
  24. A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008). [CrossRef]
  25. J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, Nat. Photonics 7, 657 (2013). [CrossRef]
  26. M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, Opt. Lett. 32, 662 (2007). [CrossRef]
  27. P. D. Woods and A. R. Champneys, Phys. D 129, 147 (1999). [CrossRef]
  28. P. Coullet, C. Riera, and C. Tresser, Phys. Rev. Lett. 84, 3069 (2000). [CrossRef]
  29. J. Burke, S. M. Houghton, and E. Knobloch, Phys. Rev. E 80, 036202 (2009). [CrossRef]
  30. J. Burke and E. Knobloch, Chaos 17, 037102 (2007). [CrossRef]
  31. E. Makrides and B. Sandstede, Phys. D 268, 59 (2014). [CrossRef]
  32. M. R. E. Lamont, Y. Okawachi, and A. L. Gaeta, Opt. Lett. 38, 3478 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited