OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 2994–2997

Measuring subwavelength phase differences with a plasmonic circuit—an example of nanoscale optical signal processing

Fatima Eftekhari, Daniel E. Gómez, and Timothy J. Davis  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 2994-2997 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ensemble of interacting metal nanostructures supporting localized surface plasmon resonances can be described as a plasmonic circuit. We show that such circuits can perform all-optical linear mathematical operations on multiple input signals, a mechanism we describe as nanoscale optical signal processing. An example plasmonic circuit that mixes together two optical signals at the subwavelength scale and outputs a measure of their phase difference is demonstrated experimentally. It is also shown that the difference circuits function as meta-atoms in a metamaterial that has potential for position-dependent signal processing of an incident light wave.

© 2014 Optical Society of America

OCIS Codes
(250.4745) Optoelectronics : Optical processing devices
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: February 12, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 11, 2014
Published: May 14, 2014

Fatima Eftekhari, Daniel E. Gómez, and Timothy J. Davis, "Measuring subwavelength phase differences with a plasmonic circuit—an example of nanoscale optical signal processing," Opt. Lett. 39, 2994-2997 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, Science 311, 189 (2006). [CrossRef]
  2. D. Gramotnev and S. Bozhevolnyi, Nat. Photonics 4, 83 (2010). [CrossRef]
  3. N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 95504 (2005). [CrossRef]
  4. N. Engheta, Science 317, 1698 (2007). [CrossRef]
  5. A. Alù and N. Engheta, Nat. Photonics 2, 307 (2008). [CrossRef]
  6. A. Alù, M. Young, and N. Engheta, Phys. Rev. B 77, 144107 (2008). [CrossRef]
  7. A. Alù and N. Engheta, Phys. Rev. Lett. 101, 043901 (2008). [CrossRef]
  8. F. Nunes and J. Weiner, IEEE Trans. Nanotechnol. 8, 298 (2009). [CrossRef]
  9. J. Greffet, M. Laroche, and F. Marquier, Phys. Rev. Lett. 105, 117701 (2010). [CrossRef]
  10. H. Lu, X. Liu, G. Wang, and D. Mao, Nanotechnology 23, 444003 (2012). [CrossRef]
  11. N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. Halas, and A. Alù, Nano Lett. 13, 142 (2013). [CrossRef]
  12. Y. Sun, B. Edwards, A. Alù, and N. Engheta, Nat. Mater. 11, 208 (2012). [CrossRef]
  13. H. Caglayan, S. Hong, B. Edwards, C. Kagan, and N. Engheta, Phys. Rev. Lett. 111, 073904 (2013). [CrossRef]
  14. T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009). [CrossRef]
  15. T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010). [CrossRef]
  16. T. J. Davis, in Plasmons: Theory and Applications, K. N. Helsey, ed. (Nova Science Publishers, 2011), pp. 111–141.
  17. T. Davis, K. Vernon, and D. Gómez, J. Appl. Phys. 106, 043502 (2009). [CrossRef]
  18. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, Science 343, 160 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited