OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 3002–3005

Adjoint sensitivity analysis of plasmonic structures using the FDTD method

Yu Zhang, Osman S. Ahmed, and Mohamed H. Bakr  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 3002-3005 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (726 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add–drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach.

© 2014 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: March 11, 2014
Revised Manuscript: April 7, 2014
Manuscript Accepted: April 8, 2014
Published: May 14, 2014

Yu Zhang, Osman S. Ahmed, and Mohamed H. Bakr, "Adjoint sensitivity analysis of plasmonic structures using the FDTD method," Opt. Lett. 39, 3002-3005 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. G. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006). [CrossRef]
  2. G. Veronis and S. Fan, Opt. Express 15, 1211 (2007). [CrossRef]
  3. M. Yosuku, O. Toshihiro, H. Masanobu, and N. Masatoshi, Opt. Express 16, 16314 (2008). [CrossRef]
  4. C. Min and G. Veronis, Opt. Express 17, 10757 (2009). [CrossRef]
  5. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, J. Phys. D 43, 055103 (2010). [CrossRef]
  6. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. S. Montiel, G. Lerondel, and A. Chelnokov, Nano Lett. 10, 2922 (2010).
  7. N. K. Nikolova, H. W. Tam, and M. H. Bakr, IEEE Trans. Microwave Theor. Tech. 52, 1207 (2004). [CrossRef]
  8. M. A. Swillam, M. H. Bakr, N. K. Nikolova, and X. Li, Electromagnetics 27, 123 (2007). [CrossRef]
  9. O. S. Ahmed, M. H. Bakr, X. Li, and T. Nomura, Opt. Lett. 37, 3453 (2012). [CrossRef]
  10. M. A. Alsunaidi and A. A. Al-Jabr, IEEE Photon. Technol. Lett. 21, 817 (2009). [CrossRef]
  11. N. K. Nikolova, Y. Li, Y. Li, and M. H. Bakr, IEEE Trans. Microwave Theor. Tech. 54, 1598 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited