OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 3026–3029

Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors

Wei Zhang and David J. Webb  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 3026-3029 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The humidity response of poly(methyl methacrylate) (PMMA)-based optical fiber Bragg gratings (POFBGs) has been studied. The characteristic wavelength of the grating is modulated by water absorption-induced swelling and refractive index change in the fiber. This work indicates that anisotropic expansion may exist in PMMA optical fiber, reducing the humidity responsivity of the grating and introducing uncertainty in the responsivity from fiber to fiber. By pre-straining a grating, one can get rid of this uncertainty and simultaneously improve the POFBG response time.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(250.5460) Optoelectronics : Polymer waveguides
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 10, 2014
Revised Manuscript: April 11, 2014
Manuscript Accepted: April 12, 2014
Published: May 14, 2014

Wei Zhang and David J. Webb, "Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors," Opt. Lett. 39, 3026-3029 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010). [CrossRef]
  2. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Ph.D. dissertation (Ecole Polytechnique Fédérale de Lausanne, 2008).
  3. W. Zhang, D. J. Webb, and G.-D. Peng, Opt. Lett. 37, 1370 (2012). [CrossRef]
  4. C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, Proc. SPIE 7503, 750380 (2009). [CrossRef]
  5. G. N. Harbach, H. G. Limberger, and R. P. Salathé, in Proceedings of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2010), paper BTuB2.
  6. D. T. Turner, Polymer 23, 197 (1982). [CrossRef]
  7. T. Watanabe, N. Ooba, Y. Hida, and M. Hikita, Appl. Phys. Lett. 72, 1533 (1998). [CrossRef]
  8. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, Opt. Express 19, 19731 (2011). [CrossRef]
  9. G. D. Peng, Z. Xiong, and P. L. Chu, Opt. Fiber Technol. 5, 242 (1999). [CrossRef]
  10. A. M. Thomas, J. Appl. Chem. 1, 141 (1951). [CrossRef]
  11. D. R. Salem, Structure Formation in Polymeric Fibers (Hanser-Gardner, 2001).
  12. P. Ji, A. D. Q. Li, and G.-D. Peng, Proc. SPIE 5212, 108 (2003).
  13. http://www.anibertech.com/Athermal%20Strain%20Sensor%20ASS-01.html.
  14. L.-H. Wang, C. L. Choy, and R. S. Porter, J. Polymer Sci. 21, 657 (1983).
  15. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, Opt. Express 15, 8844 (2007). [CrossRef]
  16. W. Zhang and D. J. Webb, “Factors influencing the temperature sensitivity of PMMA based optical fiber Bragg gratings,” in Photonics Europe, Brussels, Belgium, 2014.
  17. W. Zhang, D. J. Webb, and G.-D. Peng, J. Lightwave Technol. 30, 1090 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited