OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 3042–3045

Trade-off between linewidth and slip rate in a mode-locked laser model

Richard O. Moore  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 3042-3045 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a trade-off between linewidth and loss-of-lock rate in a mode-locked laser employing active feedback to control the carrier-envelope offset phase difference. In frequency metrology applications, the linewidth translates directly to uncertainty in the measured frequency, whereas the impact of lock loss and recovery on the measured frequency is less well understood. We reduce the dynamics to stochastic differential equations, specifically diffusion processes, and compare the linearized linewidth to the rate of lock loss determined by the mean time to exit, as calculated from large deviation theory.

© 2014 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3430) Lasers and laser optics : Laser theory
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 27, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 13, 2014
Published: May 15, 2014

Richard O. Moore, "Trade-off between linewidth and slip rate in a mode-locked laser model," Opt. Lett. 39, 3042-3045 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ye, H. Schnatz, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1041 (2003). [CrossRef]
  2. A. J. Viterbi, Principles of Coherent Communication, (McGraw-Hill, 1966).
  3. S. T. Cundiff, J. Phys. D 35, R43 (2002). [CrossRef]
  4. J. K. Wahlstrand, J. T. Willits, C. R. Menyuk, and S. T. Cundiff, Opt. Express 16, 18624 (2008). [CrossRef]
  5. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, Science 341, 1215 (2013). [CrossRef]
  6. S. T. Cundiff, in Dissipative Solitons (Springer, 2005), p. 183206.
  7. G. M. Donovan and W. L. Kath, in Photonic Applications Systems Technologies Conference (2007).
  8. D. Anderson, M. Lisak, and A. Berntson, Pramana 57, 917 (2001). [CrossRef]
  9. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer, 2012).
  10. B. Z. Bobrovsky and Z. Schuss, SIAM J. Appl. Math. 42, 174 (1982). [CrossRef]
  11. M. Heymann and E. Vanden-Eijnden, Commun. Pure Appl. Math. 61, 1052 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited