OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3212–3215

Low-threshold optical bistabilities in ultrathin nonlinear metamaterials

Shiwei Tang, Baocheng Zhu, Shiyi Xiao, Jung-Tsung Shen, and Lei Zhou  »View Author Affiliations


Optics Letters, Vol. 39, Issue 11, pp. 3212-3215 (2014)
http://dx.doi.org/10.1364/OL.39.003212


View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical bistability typically occurs only when the optical thickness in the device or the input light power is unfavorably large. Here we show that, for a class of plasmonic metamaterials consisting of ultrathin holey metallic plates filled with nonlinear materials, the optical bistability can occur with an ultralow excitation power. We present a realistic design working at 0.2 THz and perform full-wave simulations to quantitatively study its optical bistability properties. An analytical model is developed to explain the inherent physics and provides a general design guideline for future development.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(310.0310) Thin films : Thin films
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Thin Films

History
Original Manuscript: March 26, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 16, 2014
Published: May 26, 2014

Citation
Shiwei Tang, Baocheng Zhu, Shiyi Xiao, Jung-Tsung Shen, and Lei Zhou, "Low-threshold optical bistabilities in ultrathin nonlinear metamaterials," Opt. Lett. 39, 3212-3215 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-11-3212


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Mazurenko, R. Kerst, and J. I. Dijkhuis, Phys. Rev. Lett. 91, 213903 (2003). [CrossRef]
  2. H. Nihei and A. Okamoto, Jpn. J. Appl. Phys. 40, 6835 (2001). [CrossRef]
  3. G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, Appl. Phys. Lett. 67, 2120 (1995). [CrossRef]
  4. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, Appl. Phys. Lett. 66, 2324 (1995). [CrossRef]
  5. I. S. Nefedov, V. N. Gusyatnikov, and P. K. Kashkarov, Laser Phys. 10, 640 (2000).
  6. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).
  7. F. S. Felber and J. H. Marburger, Appl. Phys. Lett. 28, 731 (1976). [CrossRef]
  8. J. H. Marburger and F. S. Felber, Phys. Rev. A 17, 335 (1978). [CrossRef]
  9. W. Chen and D. L. Mills, Phys. Rev. B 35, 524 (1987). [CrossRef]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998). [CrossRef]
  11. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef]
  12. The transmittance is less than 100% when metallic losses are taken into account.
  13. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, J. Opt. A Pure Appl. Opt. 7, S97 (2005). [CrossRef]
  14. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, Phys. Rev. Lett. 105, 1 (2010). [CrossRef]
  15. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, Nat. Mater. 9, 730 (2010). [CrossRef]
  16. Y. Ueba, J. Takahara, and T. Nagatsuma, Opt. Lett. 36, 909 (2011). [CrossRef]
  17. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Lett. 36, 4635 (2011). [CrossRef]
  18. EastFDTD V4.0, DONGJUN Science and Technology Co., China.
  19. Calculations show that the working bandwidth of the device is about 19 GHz.
  20. A. Mayer and F. Keilmann, Phys. Rev. B 33, 6962 (1986). [CrossRef]
  21. R. Brazis, R. Raguotis, and M. R. Siegrist, J. Appl. Phys. 84, 3474 (1998). [CrossRef]
  22. S. Y. Xiao, Q. He, X. Q. Huang, and L. Zhou, Metamaterials 5, 112 (2011). [CrossRef]
  23. J. Jung, F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, Phys. Rev. B 79, 153407 (2009). [CrossRef]
  24. Such a relation can also be rigorously derived from the mode-expansion theory under the single-mode approximation.
  25. G. P. Agrawal and N. A. Olsson, IEEE JQE 25, 2297 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited