OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3219–3222

Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method

Wei-Li Wang, Xian-Shao Zou, Bin Zhang, Jun Dong, Qiao-Li Niu, Yi-An Yin, and Yong Zhang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 11, pp. 3219-3222 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

© 2014 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.4000) Optical devices : Microstructure fabrication
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: March 19, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 15, 2014
Published: May 26, 2014

Wei-Li Wang, Xian-Shao Zou, Bin Zhang, Jun Dong, Qiao-Li Niu, Yi-An Yin, and Yong Zhang, "Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method," Opt. Lett. 39, 3219-3222 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Service, Science 319, 718 (2008). [CrossRef]
  2. R. G. Little and M. J. Nowlan, Prog. Photovolt. 5, 309 (1997). [CrossRef]
  3. V. M. Fthenakis and H. C. Kim, Sol. Energy 85, 1609 (2011). [CrossRef]
  4. M. J. Sailor, E. J. Ginsburg, C. B. Gorman, A. Kumar, R. H. Grubbs, and N. S. Lewis, Science 249, 1146 (1990). [CrossRef]
  5. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, Nat. Mater. 4, 455 (2005). [CrossRef]
  6. L. Hu and G. Chen, Nano Lett. 7, 3249 (2007). [CrossRef]
  7. E. C. Garnett and P. Yang, J. Am. Chem. Soc. 130, 9224 (2008). [CrossRef]
  8. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett. 91, 233117 (2007). [CrossRef]
  9. E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010). [CrossRef]
  10. S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, Chem. Mater. 22, 3108 (2010). [CrossRef]
  11. J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer 45, 8443 (2004). [CrossRef]
  12. B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, Appl. Phys. Lett. 99, 113510 (2011). [CrossRef]
  13. L. He, Rusli, C. Jiang, H. Wang, and D. Lai, IEEE Electron Device Lett. 32, 1406 (2011). [CrossRef]
  14. T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, Appl. Phys. Lett. 101, 033301 (2012). [CrossRef]
  15. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, Nano Lett. 12, 2971 (2012). [CrossRef]
  16. M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, Appl. Phys. Express 5, 032301 (2012). [CrossRef]
  17. W. H. Lu, Q. Chen, B. Wang, and L. W. Chen, Appl. Phys. Lett. 100, 023112 (2012). [CrossRef]
  18. S. A. Moiz, A. M. Nahhas, H.-D. Um, S.-W. Jee, H. K. Cho, S.-W. Kim, and J.-H. Lee, Nanotechnology 23, 145401 (2012). [CrossRef]
  19. L. He, C. Jiang, H. Wang, D. Lai, Y. H. Tan, C. S. Tan, and Rusli, Appl. Phys. Lett. 100, 103104 (2012). [CrossRef]
  20. J. Zhang, Y. Zhang, F. Zhang, and B. Sun, Appl. Phys. Lett. 102, 013501 (2013). [CrossRef]
  21. S. Avasthi, Y. Qi, G. K. Vertelov, J. Schwartz, A. Kahn, and J. C. Sturm, Appl. Phys. Lett. 96, 222109 (2010). [CrossRef]
  22. D. Liu, Y. Zhang, X. Fang, F. Zhang, T. Song, and B. Sun, IEEE Electron Device Lett. 34, 345 (2013). [CrossRef]
  23. Y. Zhu, T. Song, F. Zhang, S.-T. Lee, and B. Sun, Appl. Phys. Lett. 102, 113504 (2013). [CrossRef]
  24. Q. Liu, T. Imamura, T. Hiate, I. Khatri, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, Appl. Phys. Lett. 102, 243902 (2013). [CrossRef]
  25. P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, ACS Nano 7, 10780 (2013). [CrossRef]
  26. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, Small 1, 1062 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited