OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3219–3222

Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method

Wei-Li Wang, Xian-Shao Zou, Bin Zhang, Jun Dong, Qiao-Li Niu, Yi-An Yin, and Yong Zhang  »View Author Affiliations


Optics Letters, Vol. 39, Issue 11, pp. 3219-3222 (2014)
http://dx.doi.org/10.1364/OL.39.003219


View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

© 2014 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.4000) Optical devices : Microstructure fabrication
(350.6050) Other areas of optics : Solar energy

ToC Category:
Materials

History
Original Manuscript: March 19, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 15, 2014
Published: May 26, 2014

Citation
Wei-Li Wang, Xian-Shao Zou, Bin Zhang, Jun Dong, Qiao-Li Niu, Yi-An Yin, and Yong Zhang, "Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method," Opt. Lett. 39, 3219-3222 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-11-3219

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited