OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3282–3285

Radially oscillating and quasi-guided surface plasmon polaritons in cylindrical metallic nanostructures

Hang Lian, Ying Gu, Luojia Wang, Haitao Liu, and Qihuang Gong  »View Author Affiliations


Optics Letters, Vol. 39, Issue 11, pp. 3282-3285 (2014)
http://dx.doi.org/10.1364/OL.39.003282


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analytically propose radially oscillating and quasi-guided surface plasmon polaritons (SPPs) by designing the outer and core dielectric permittivities εa and εc of a cylindrical metallic nanotube. When the propagation constant satisfies εa<Re(kz/k0)<εc, the electromagnetic field propagates along the radial direction in the core region and decays outside the nanotube, forming a standing radially oscillating SPP. In contrast, when εc<Re(kz/k0)<εa, the electromagnetic field decays in the core region and propagates outside the nanotube, forming a quasi-guided SPP. The propagation length of both SPPs can reach tens of micrometers, in particular, the radially oscillating SPPs have an ultrastrong light confinement. Finally, we design position-flexible broadband plasmonic router based on quasi-guided SPPs, and we also discuss the advantages of a nanolaser based on radially oscillating SPPs.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 24, 2014
Revised Manuscript: April 22, 2014
Manuscript Accepted: April 24, 2014
Published: May 27, 2014

Citation
Hang Lian, Ying Gu, Luojia Wang, Haitao Liu, and Qihuang Gong, "Radially oscillating and quasi-guided surface plasmon polaritons in cylindrical metallic nanostructures," Opt. Lett. 39, 3282-3285 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-11-3282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Wokaun, J. Gordon, and P. Liao, Phys. Rev. Lett. 48, 957 (1982). [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, Nat. Photonics 1, 641 (2007). [CrossRef]
  3. A. Wokaun, J. Bergman, J. Heritage, A. Glass, P. Liao, and D. Olson, Phys. Rev. B 24, 849 (1981). [CrossRef]
  4. M. Danckwerts and L. Novotny, Phys. Rev. Lett. 98, 026104 (2007). [CrossRef]
  5. I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, Opt. Express 19, A64 (2011). [CrossRef]
  6. D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, Appl. Phys. Lett. 89, 093103 (2006). [CrossRef]
  7. M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, Nat. Phys. 9, 329 (2013). [CrossRef]
  8. Y. Gu, L. Wang, P. Ren, J. Zhang, T. Zhang, O. J. Martin, and Q. Gong, Nano Lett. 12, 2488 (2012). [CrossRef]
  9. C. Pfeiffer, E. Economou, and K. Ngai, Phys. Rev. B 10, 3038 (1974). [CrossRef]
  10. L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994). [CrossRef]
  11. B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, ACS Nano 6, 472 (2012). [CrossRef]
  12. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). [CrossRef]
  13. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, Phys. Rev. B 74, 205419 (2006). [CrossRef]
  14. D. Handapangoda, M. Premaratne, I. D. Rukhlenko, and C. Jagadish, Opt. Express 19, 16058 (2011). [CrossRef]
  15. J. Song, R. P. Zaccaria, G. Dong, E. Di Fabrizio, M. Yu, and G. Lo, Opt. Express 19, 25206 (2011). [CrossRef]
  16. Y. Peng-Fei, G. Ying, and G. Qi-Huang, Chin. Phys. B 17, 3880 (2008). [CrossRef]
  17. L. Wang, Y. Gu, X. Hu, B. Sun, L. Tong, and Q. Gong, Europhys. Lett. 96, 37002 (2011). [CrossRef]
  18. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009). [CrossRef]
  19. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, Nano Lett. 10, 1950 (2010). [CrossRef]
  20. A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, Nature 450, 402 (2007). [CrossRef]
  21. U. Schröter and A. Dereux, Phys. Rev. B 64, 125420 (2001). [CrossRef]
  22. M. Liscidini and J. Sipe, Phys. Rev. B 81, 115335 (2010). [CrossRef]
  23. J. A. Stratton, Electromagnetic Theory, Vol. 33 (Wiley, 2007).
  24. S. Bao-Qing, G. Ying, H. Xiao-Yong, and G. Qi-Huang, Chin. Phys. Lett. 28, 057303 (2011). [CrossRef]
  25. P. B. Johnson and R.-W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  26. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010). [CrossRef]
  27. P. Berini and I. De Leon, Nat. Photonics 6, 16 (2011). [CrossRef]
  28. I. De Leon and P. Berini, Nat. Photonics 4, 382 (2010). [CrossRef]
  29. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, Nat. Photonics 4, 457 (2010). [CrossRef]
  30. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, Nat. Photonics 7, 963 (2013). [CrossRef]
  31. A. Maslov and C. Ning, in Integrated Optoelectronic Devices 2007 (International Society for Optics and Photonics, 2007), p. 64680I.
  32. K. Ikeda and H. Kawaguchi, J. Opt. Soc. Am. B 30, 1981 (2013). [CrossRef]
  33. C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haïdar, Appl. Phys. Lett. 99, 241104 (2011). [CrossRef]
  34. D. Singh, M. Raghuwanshi, and G. P. Kumar, Appl. Phys. Lett. 101, 111111 (2012). [CrossRef]
  35. R. Konenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, Appl. Phys. Lett. 101, 141114 (2012). [CrossRef]
  36. L. Bursill, P. A. Stadelmann, J. Peng, and S. Prawer, Phys. Rev. B 49, 2882 (1994). [CrossRef]
  37. A. Moradi, Plasmonics 8, 1509 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited