OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3356–3359

Shifted knife-edge aperture digital in-line holography for fluid velocimetry

Virginia Palero, Julia Lobera, Nieves Andrés, and M. Pilar Arroyo  »View Author Affiliations

Optics Letters, Vol. 39, Issue 11, pp. 3356-3359 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (723 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a digital holography technique that, with the simplicity of an in-line configuration, produces holograms where the real and virtual images are completely separated, as in an off-axis configuration. An in-line setup, in which the object is imaged near the sensor, is modified by placing a shifted knife-edge aperture that blocks half the frequency spectrum at the focal plane of the imaging lens. This simple modification of the in-line holographic configuration allows discriminating the virtual and real images. As a fluid velocimetry technique, the use of this aperture removes the minimum defocusing distance requisite and reduces the out-of-plane velocity measurement errors of classical in-line holography. Results with different test objects are shown.

© 2014 Optical Society of America

OCIS Codes
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(090.1995) Holography : Digital holography
(070.2615) Fourier optics and signal processing : Frequency filtering

ToC Category:

Original Manuscript: February 24, 2014
Revised Manuscript: April 9, 2014
Manuscript Accepted: April 28, 2014
Published: May 30, 2014

Virginia Palero, Julia Lobera, Nieves Andrés, and M. Pilar Arroyo, "Shifted knife-edge aperture digital in-line holography for fluid velocimetry," Opt. Lett. 39, 3356-3359 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).
  2. J. Müller, V. Kebbel, and W. Jüptner, Meas. Sci. Technol. 15, 706 (2004). [CrossRef]
  3. V. Palero, M. P. Arroyo, and J. Soria, Exp. Fluids 43, 185 (2007). [CrossRef]
  4. K. D. Hinsch, Meas. Sci. Technol. 13, R61 (2002). [CrossRef]
  5. H. Meng, G. Pang, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004). [CrossRef]
  6. S. Talapatra and J. Katz, J. Fluid Mech. 711, 161 (2012). [CrossRef]
  7. E. Malkiel, J. Sheng, J. Katz, and J. R. Strickle, J. Exp. Biol. 206, 3657 (2003). [CrossRef]
  8. J. Sheng, E. Malkiel, and J. Katz, Appl. Opt. 45, 3893 (2006). [CrossRef]
  9. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, Meas. Sci. Technol. 19, 074004 (2008). [CrossRef]
  10. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962). [CrossRef]
  11. J. Burke, C. Hess, and V. Kebbel, “Digital holography for whole field spray diagnostics,” in Proceedings of the 11th International Symposium on Application of Laser Techniques to Fluids Mechanics, Lisbon, Portugal, 2002.
  12. J. Lobera, N. Andrés, and M. P. Arroyo, Meas. Sci. Technol. 15, 718 (2004). [CrossRef]
  13. V. Palero, J. Lobera, and M. P. Arroyo, Exp. Fluids 39, 397 (2005). [CrossRef]
  14. V. Palero, J. Lobera, and M. P. Arroyo, Exp. Fluids 49, 471 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited