OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 12 — Jun. 15, 2014
  • pp: 3371–3373

Talbot effect in weakly coupled monolayer graphene sheet arrays

Yang Fan, Bing Wang, Kai Wang, Hua Long, and Peixiang Lu  »View Author Affiliations

Optics Letters, Vol. 39, Issue 12, pp. 3371-3373 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate the plasmonic Talbot effect in monolayer graphene sheet arrays (MGSAs) when surface plasmon polaritons (SPPs) between graphene experience weak coupling. The Talbot effect occurs only when the incident field has a pattern with a few selected periods. The Talbot distance is found to decrease exponentially with the decreasing period of the MGSA and can be as small as 1/20 of the incident wavelength. In addition, the Talbot distance can be further reduced by increasing the chemical potential of graphene or operating at longer wavelengths.

© 2014 Optical Society of America

OCIS Codes
(110.6760) Imaging systems : Talbot and self-imaging effects
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 27, 2014
Manuscript Accepted: April 25, 2014
Published: June 2, 2014

Yang Fan, Bing Wang, Kai Wang, Hua Long, and Peixiang Lu, "Talbot effect in weakly coupled monolayer graphene sheet arrays," Opt. Lett. 39, 3371-3373 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Talbot, Philos. Mag. 9(56), 401 (1836). [CrossRef]
  2. J. Bhattacharya, Appl. Opt. 28, 2600 (1989). [CrossRef]
  3. G. Spagnolo, D. Ambrosini, and D. Paoletti, J. Opt. A 4, S376 (2002). [CrossRef]
  4. L. Liu, Opt. Lett. 14, 1312 (1989). [CrossRef]
  5. L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, Opt. Express 18, 19485 (2010). [CrossRef]
  6. P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffrè, G. Coppola, and M. Iodice, Appl. Phys. Lett. 94, 121105 (2009). [CrossRef]
  7. M. R. Dennis, N. I. Zheludev, and F. J. García de Abajo, Opt. Express 15, 9692 (2007). [CrossRef]
  8. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, and G. I. Stegeman, Phys. Rev. Lett. 95, 053902 (2005). [CrossRef]
  9. Y. K. Wang, K. Y. Zhou, X. R. Zhang, K. Yang, Y. X. Wang, Y. L. Song, and S. T. Liu, Opt. Lett. 35, 685 (2010). [CrossRef]
  10. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photonics 6, 749 (2012). [CrossRef]
  11. A. Vakil and N. Engheta, Science 332, 1291 (2011). [CrossRef]
  12. P. Y. Chen and A. Alù, ACS Nano 5, 5855 (2011). [CrossRef]
  13. G. W. Hanson, J. Appl. Phys. 104, 084314 (2008). [CrossRef]
  14. C. H. Gan, Appl. Phys. Lett. 101, 111609 (2012). [CrossRef]
  15. B. Wang, X. Zhang, F. J. García-Vidal, X. C. Yuan, and J. H. Teng, Phys. Rev. Lett. 109, 073901 (2012). [CrossRef]
  16. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, Phys. Rev. Lett. 103, 033902 (2009). [CrossRef]
  17. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794 (1988). [CrossRef]
  18. Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, Appl. Phys. Lett. 103, 241116 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited