OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 12 — Jun. 15, 2014
  • pp: 3516–3519

Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer

Hsiao-Tsung Wang, Jia-De Lin, Chia-Rong Lee, and Wei Lee  »View Author Affiliations

Optics Letters, Vol. 39, Issue 12, pp. 3516-3519 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, we propose defect-mode lasing from a one-dimensional asymmetric photonic structure with dye-doped nematic liquid crystal as a central defect layer. The local field intensity of the distinguished single defect mode at the overlapped photonic band edges is drastically enhanced by the asymmetric structure consisting of two distinct multilayer photonic crystals. With high density of states of photons, effective output lasing emission and maximum input excitation are ensured. As a result, the single-mode lasing with a low excitation threshold of 0.2μJ/pulse is achieved due to the combination of the defect layer and the photonic band edge effect.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(230.3720) Optical devices : Liquid-crystal devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: April 10, 2014
Revised Manuscript: May 8, 2014
Manuscript Accepted: May 8, 2014
Published: June 6, 2014

Hsiao-Tsung Wang, Jia-De Lin, Chia-Rong Lee, and Wei Lee, "Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer," Opt. Lett. 39, 3516-3519 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, Phys. Rev. Lett. 58, 2486 (1987). [CrossRef]
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). [CrossRef]
  3. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997). [CrossRef]
  4. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000). [CrossRef]
  5. Y. A. Vlasov, K. Luterova, I. Pelant, B. Hönerlage, and V. N. Astratov, Appl. Phys. Lett. 71, 1616 (1997). [CrossRef]
  6. G. Ma, S.-H. Tang, J. Shen, Z. Zhang, and Z. Hua, Opt. Lett. 29, 1769 (2004). [CrossRef]
  7. K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999). [CrossRef]
  8. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, Opt. Lett. 36, 2632 (2011). [CrossRef]
  9. I. P. Ilchishin, E. A. Tikhonov, M. T. Shpak, and A. A. Doroshkin, JETP Lett. 24, 303 (1976).
  10. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998). [CrossRef]
  11. B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, Mol. Cryst. Liq. Cryst. 358, 73 (2001). [CrossRef]
  12. M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, Adv. Mater. 14, 306 (2002). [CrossRef]
  13. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, Nat. Mater. 1, 111 (2002). [CrossRef]
  14. Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999). [CrossRef]
  15. V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2002). [CrossRef]
  16. I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, Opt. Mater. Express 1, 1484 (2011). [CrossRef]
  17. H. Coles and S. Morris, Nat. Photonics 4, 676 (2010). [CrossRef]
  18. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 82, 3593 (2003). [CrossRef]
  19. M.-H. Song, N.-Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J.-W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, Adv. Mater. 18, 193 (2006). [CrossRef]
  20. R. Shankar, Principles of Quantum Mechanics, 2nd ed. (Plenum, 1994).
  21. ZLI-2293, a commercial mixture obtained from Merck, is a broad-range mixture for super-twisted nematic displays. According to the Merck data sheet, its clearing point is 85.0°C, dielectric constants are 14.1 and 4.1 at 1 kHz, and refractive indices are 1.63 and 1.50 at 589 nm.
  22. J. M. Bendickson and J. P. Dowling, Phys. Rev. E 53, 4107 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited