OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 12 — Jun. 15, 2014
  • pp: 3591–3594

Widely tunable frequency conversion in monolithic semiconductor waveguides at 2.4  μm

Payam Abolghasem, Dongpeng Kang, Dylan F. Logan, Mandy Lungwitz, and Amr S. Helmy  »View Author Affiliations

Optics Letters, Vol. 39, Issue 12, pp. 3591-3594 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the generation of continuous-wave widely tunable light between 2360 and 2530 nm using difference-frequency generation with a pump tuned between 938 and 952 nm and a signal tuned between 1490 and 1590 nm in a type-II phase-matched monolithic semiconductor waveguide. The device internal conversion efficiency is estimated to be 0.29%W1cm2. This design which uses a single-sided Bragg reflection waveguide has the potential for on-chip spectroscopy, as well as environmental monitoring applications, where a tunable source of coherent radiation tuned between 2 and 3 μm wavelength is desired.

© 2014 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: March 21, 2014
Revised Manuscript: May 11, 2014
Manuscript Accepted: May 11, 2014
Published: June 11, 2014

Payam Abolghasem, Dongpeng Kang, Dylan F. Logan, Mandy Lungwitz, and Amr S. Helmy, "Widely tunable frequency conversion in monolithic semiconductor waveguides at 2.4  μm," Opt. Lett. 39, 3591-3594 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. HITRAN web site, http://cfa-www.harvard.edu/hitran/ .
  2. A. Farooq, J. B. Jeffries, and R. K. Hanson, Meas. Sci. Technol. 19, 075604 (2008). [CrossRef]
  3. M. G. Allen, Meas. Sci. Technol. 9, 545 (1998). [CrossRef]
  4. A. Joullié and P. Christol, C. R. Phys. 4, 621 (2003). [CrossRef]
  5. M. Razeghi, IEEE J. Sel. Top. Quantum Electron. 15, 941 (2009). [CrossRef]
  6. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010). [CrossRef]
  7. A. Vizbaras, M. Anders, C. Grasse, S. Katz, G. Boehm, R. Meyer, M. A. Belkin, and M.-C. Amann, Phys. Status Solidi C 9, 298 (2012). [CrossRef]
  8. S. D. Jackson, Nat. Photonics 6, 423 (2012). [CrossRef]
  9. R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997). [CrossRef]
  10. P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, Opt. Lett. 23, 331 (1998). [CrossRef]
  11. R. Haidar, A. Mustelier, P. Kupecek, E. Rosencher, R. Triboulet, P. Lemasson, and G. Mennerat, J. Appl. Phys. 91, 2550 (2002). [CrossRef]
  12. P. Abolghasem, J.-B. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, IEEE J. Sel. Top. Quantum Electron. 18, 812 (2012). [CrossRef]
  13. J. B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, Opt. Lett. 35, 2334 (2010). [CrossRef]
  14. P. Abolghasem and A. S. Helmy, J. Opt. Soc. Am. B 29, 1367 (2012). [CrossRef]
  15. P. Abolghasem, J. Han, B. J. Bijlani, and A. S. Helmy, Opt. Express 18, 12681 (2010). [CrossRef]
  16. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, Appl. Phys. Lett. 71, 3622 (1997). [CrossRef]
  17. O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, and M. M. Fejer, Opt. Lett. 27, 2091 (2002). [CrossRef]
  18. T. H. Stievater, R. Mahon, D. Park, W. S. Rabinovich, M. W. Pruessner, J. B. Khurgin, and C. J. K. Richardson, Opt. Lett. 39, 945 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited