OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 12 — Jun. 15, 2014
  • pp: 3607–3610

Dissimilar permittivity and permeability sensitivities in nonlinear plasmons and spoof plasmons

Yen-Kai Chang and Chih-Wei Chang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 12, pp. 3607-3610 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that employing localized surface plasmon resonators to probe environmental media will always lead to dissimilar optical sensitivities to permittivity and permeability. We find that while the permittivity sensitivities of diverse plasmonic structures display a geometry-independent universal scaling relation, the permeability sensitivities are highly dependent on the metals’ geometries and resonant modes. Similar results are also found in mixed real/spoof localized surface plasmon resonators, and the phenomena can be universally scaled to the normalized effective plasmon frequencies. Importantly, the results put a fundamental constraint for all plasmonic-assisted nonlinear magneto-optical phenomena, including the Faraday effect, magneto-optical Kerr effect, and Cotton–Mouton effect.

© 2014 Optical Society of America

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: March 14, 2014
Revised Manuscript: May 7, 2014
Manuscript Accepted: May 14, 2014
Published: June 11, 2014

Yen-Kai Chang and Chih-Wei Chang, "Dissimilar permittivity and permeability sensitivities in nonlinear plasmons and spoof plasmons," Opt. Lett. 39, 3607-3610 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. W. Anderson, Phys. Rev. 130, 439 (1963). [CrossRef]
  2. Y. K. Chang, Z. X. Lou, K. D. Chang, and C. W. Chang, Opt. Express 21, 1804 (2013). [CrossRef]
  3. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, Nat. Nanotechnol. 6, 370 (2011).
  4. V. V. Temnov, Nat. Photonics 6, 728 (2012). [CrossRef]
  5. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, Nat. Commun. 4, 1599 (2013). [CrossRef]
  6. M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005). [CrossRef]
  7. C. Y. Chen, S. C. Wu, and T. J. Yen, Appl. Phys. Lett. 93, 034110 (2008). [CrossRef]
  8. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005). [CrossRef]
  9. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004). [CrossRef]
  10. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited