OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 12 — Jun. 15, 2014
  • pp: 3619–3622

Parabolic scaling beams

Nan Gao and Changqing Xie  »View Author Affiliations


Optics Letters, Vol. 39, Issue 12, pp. 3619-3622 (2014)
http://dx.doi.org/10.1364/OL.39.003619


View Full Text Article

Enhanced HTML    Acrobat PDF (353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin’s type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.3300) Lasers and laser optics : Laser beam shaping
(260.0260) Physical optics : Physical optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

History
Original Manuscript: February 26, 2014
Revised Manuscript: April 29, 2014
Manuscript Accepted: May 22, 2014
Published: June 11, 2014

Citation
Nan Gao and Changqing Xie, "Parabolic scaling beams," Opt. Lett. 39, 3619-3622 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-12-3619


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987). [CrossRef]
  3. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, Opt. Lett. 25, 1493 (2000). [CrossRef]
  4. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, Opt. Lett. 29, 44 (2004). [CrossRef]
  5. M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979). [CrossRef]
  6. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007). [CrossRef]
  7. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007). [CrossRef]
  8. E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev. Lett. 106, 213902 (2011). [CrossRef]
  9. N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045 (2010). [CrossRef]
  10. J. D. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, and M. R. Dennis, Opt. Express 20, 18955 (2012). [CrossRef]
  11. A. E. Siegman, IEEE J. Quantum Electron. 27, 1146 (1991). [CrossRef]
  12. N. Gao, Y. Zhang, and C. Xie, Appl. Opt. 50, G142 (2011). [CrossRef]
  13. N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, Appl. Phys. Lett. 98, 151106 (2011). [CrossRef]
  14. Generally, to define a scaling beam with scaling factor s(z), the s−1(z) factor must appear outside the scaling function ψ[r/s(z)], so as to make sure the conservation of total beam power, i.e., (∂/∂z)∫|E(r,z)|2d2r=0. Though we do not require the beam to be of finite power at first, this ansatz still proves to be useful. Thus in Figs. 2(a), 3(a), 4, and 5(a), for a better clarity, we neglect the s−1(z) factors, which is equivalent to normalizing the xy profile at each z plane independently.
  15. C. F. R. Caron and R. M. Potvliege, Opt. Commun. 164, 83 (1999). [CrossRef]
  16. M. A. Bandres and J. C. Gutiérrez-Vega, Opt. Lett. 33, 177 (2008). [CrossRef]
  17. Here we use the integral formulas ∫02πdφ exp(imφ)exp[iς cos(φ−θ)]=2πim exp(imθ)Jm(ς) for m∈Z, and ∫0∞dx exp(−βx)J2v(2ax)Jv(bx)=exp[−a2β/(β2+b2)]Jv[a2b/(β2+b2)]/(β2+b2)1/2 for   Re β>0,b>0 and Re v>−0.5. See I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, 7th ed., Series and Products (Academic, 2007).
  18. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, Phys. Rev. Lett. 108, 163901 (2012). [CrossRef]
  19. D. Deng, Y. Gao, J. Zhao, P. Zhang, and Z. Chen, Opt. Lett. 38, 3934 (2013). [CrossRef]
  20. M. V. Berry, J. Phys. A 27, L391 (1994). [CrossRef]
  21. K. Lombardo and M. A. Alonso, Am. J. Phys. 80, 82 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited