OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 13 — Jul. 1, 2014
  • pp: 3837–3840

Equivalence theorem for the spectral density of light waves on weak scattering

Tao Wang, Xiaoling Ji, and Daomu Zhao  »View Author Affiliations

Optics Letters, Vol. 39, Issue 13, pp. 3837-3840 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Equivalence theorem for the spectral density of light waves on weak scattering is discussed. It is shown that when a spatially coherent plane light wave is scattered from two entirely different media, the far-zone spectral density may have identical distribution provided the low-frequency antidiagonal spatial Fourier components of the correlation function of the media are the same. An example of light waves on scattering from a Gaussian Schell model medium is discussed, and the condition on which two different media may produce identical spectral densities is presented.

© 2014 Optical Society of America

OCIS Codes
(290.2558) Scattering : Forward scattering
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: March 31, 2014
Manuscript Accepted: May 22, 2014
Published: June 23, 2014

Tao Wang, Xiaoling Ji, and Daomu Zhao, "Equivalence theorem for the spectral density of light waves on weak scattering," Opt. Lett. 39, 3837-3840 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, J. T. Foley, and F. Gori, J. Opt. Soc. Am. A 6, 1142 (1989). [CrossRef]
  2. D. G. Fischer and E. Wolf, J. Opt. Soc. Am. A 11, 1128 (1994). [CrossRef]
  3. C. Ding, Y. Cai, Y. Zhang, and L. Pan, Phys. Lett. A 376, 2697 (2012). [CrossRef]
  4. Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, Opt. Commun. 278, 247 (2007). [CrossRef]
  5. J. Li, Opt. Commun. 308, 164 (2013). [CrossRef]
  6. A. Dogariu and E. Wolf, Opt. Lett. 23, 1340 (1998). [CrossRef]
  7. Z. Mei and O. Korotkova, Opt. Express 20, 29296 (2012). [CrossRef]
  8. T. D. Visser, D. G. Fischer, and E. Wolf, J. Opt. Soc. Am. A 23, 1631 (2006). [CrossRef]
  9. S. Sahin and O. Korotkova, Opt. Lett. 34, 1762 (2009). [CrossRef]
  10. X. Du and D. Zhao, Opt. Lett. 35, 384 (2010). [CrossRef]
  11. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  12. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  13. M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, Phys. Rev. Lett. 102, 123901 (2009). [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  15. E. Collett and E. Wolf, Opt. Lett. 2, 27 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited