OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 13 — Jul. 1, 2014
  • pp: 3845–3848

Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability

Ping Zhao, Lei Shi, Yang Liu, Zheqi Wang, Shengli Pu, and Xinliang Zhang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 13, pp. 3845-3848 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, a novel silica microsphere resonator (MSR) embedded with iron-oxide nanoparticles, which possesses broadband all-optical wavelength tunability, is demonstrated. It is generated by using in-line 1550 nm laser ablation of a microfiber with the assistance of magnetic fluid. To the best of our knowledge, this simple method of fabricating such MSRs is reported for the first time. Prominent photothermal effect is realized by the iron-oxide nanoparticles absorbing light pumped via the fiber stem, leading to a wavelength shift of over 13 nm (1.6 THz). Moreover, a linear tuning efficiency up to 0.2nm/mW is realized. With excellent robustness and being fiberized, the spheres can be attractive elements in building up novel micro-illuminators, point heaters, optical sensors, and fiber communication modules.

© 2014 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(190.4870) Nonlinear optics : Photothermal effects
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

Original Manuscript: March 27, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: May 25, 2014
Published: June 23, 2014

Ping Zhao, Lei Shi, Yang Liu, Zheqi Wang, Shengli Pu, and Xinliang Zhang, "Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability," Opt. Lett. 39, 3845-3848 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, Nature 424, 839 (2003). [CrossRef]
  2. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006). [CrossRef]
  3. J. Ward and O. Benson, Laser Photon. Rev. 5, 553 (2011). [CrossRef]
  4. I. H. Agha, Y. Okawachi, and A. L. Gaeta, Opt. Express 17, 16209 (2009). [CrossRef]
  5. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A 57, R2293 (1998). [CrossRef]
  6. M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Otugen, Rev. Sci. Instrum. 83, 105003 (2012). [CrossRef]
  7. K. Totsuka, N. Kobayashi, and M. Tomita, Phys. Rev. Lett. 98, 213904 (2007). [CrossRef]
  8. V. S. Ilchenko, X. S. Yao, and L. Maleki, Proc. SPIE 3611, 190 (1999). [CrossRef]
  9. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, Opt. Commun. 145, 86 (1998). [CrossRef]
  10. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, Opt. Lett. 26, 166 (2001). [CrossRef]
  11. R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, Opt. Lett. 37, 4762 (2012). [CrossRef]
  12. T. Ioppolo, U. Ayaz, and M. V. Ötügen, Opt. Express 17, 16465 (2009). [CrossRef]
  13. H. C. Tapalian, J. P. Laine, and P. A. Lane, IEEE Photon. Technol. Lett. 14, 1118 (2002). [CrossRef]
  14. J. M. Ward and S. N. Chormaic, Appl. Phys. B 100, 847 (2010). [CrossRef]
  15. A. Watkins, J. Ward, and S. N. Chormaic, J. Appl. Phys. 51, 052501 (2012). [CrossRef]
  16. G. Brambilla, V. Finazzi, and D. J. Richardson, Opt. Express 12, 2258 (2004). [CrossRef]
  17. P. Zhao, J. Zhang, Y. Yu, J. Dong, L. Shi, Y. Liu, and X. Zhang, Opt. Express 21, 8231 (2013). [CrossRef]
  18. A. Schlegel, S. F. Alvarado, and P. Wachter, J. Phys. C 12, 1157 (1979). [CrossRef]
  19. S. Pu, X. Chen, C. Yuping, Y. Xu, W. Liao, L. Chen, and Y. Xia, J. Appl. Phys. 99, 093516 (2006). [CrossRef]
  20. S. Pu, H. Wang, N. Wang, and X. Zeng, Appl. Phys. B 112, 223 (2013). [CrossRef]
  21. S. Pu, X. Chen, L. Chen, W. Liao, C. Yuping, and Y. Xia, Appl. Phys. Lett. 87, 021901 (2005). [CrossRef]
  22. H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, Opt. Lett. 38, 3765 (2013). [CrossRef]
  23. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, Opt. Commun. 208, 117 (2002). [CrossRef]
  24. J. Tang, M. Myers, K. A. Bosnick, and L. E. Brus, J. Phys. Chem. B 107, 7501 (2003). [CrossRef]
  25. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997). [CrossRef]
  26. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000). [CrossRef]
  27. Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, Opt. Commun. 203, 301 (2002). [CrossRef]
  28. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
  29. U. Haken, O. Humbach, S. Ortner, and H. Fabian, J. Non-Cryst. Solids 265, 9 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited