OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 13 — Jul. 1, 2014
  • pp: 3939–3941

Multiscale photoacoustic microscopy with continuously tunable resolution

Bowen Jiang, Xiaoquan Yang, Yanyan Liu, Yong Deng, and Qingming Luo  »View Author Affiliations

Optics Letters, Vol. 39, Issue 13, pp. 3939-3941 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multiscale photoacoustic microscope with continuously tunable lateral resolution is developed. The tunable resolution is achieved by using an electrical varifocal lens and an optical fiber bundle. The varifocal lens is used to generate a size tunable focused laser spot on the tip of the fiber bundle. Laser beams emerging from the other end of the fiber bundle are imaged into the object as the excitation light spot for acoustic generation. The verified lateral resolution of the system can be tuned from 1μm to more than 44.8 μm, which span from optical resolution to acoustic resolution. Additionally, a mouse ear was imaged in vivo using three different resolutions to demonstrate the feasibility of the multiscale imaging capability of our system.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Imaging Systems

Original Manuscript: April 2, 2014
Manuscript Accepted: April 26, 2014
Published: June 26, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Bowen Jiang, Xiaoquan Yang, Yanyan Liu, Yong Deng, and Qingming Luo, "Multiscale photoacoustic microscopy with continuously tunable resolution," Opt. Lett. 39, 3939-3941 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, Nat. Methods 7, 603 (2010). [CrossRef]
  2. P. Beard, Int. Focus 1, 602 (2011).
  3. P. Hajireza, W. Shi, and R. J. Zemp, Opt. Express 19, 20097 (2011). [CrossRef]
  4. L. Liao, C. Lin, Y. Y. I. Shih, T. Duong, H. Lai, P. Wang, R. Wu, S. Tsang, J. Chang, M. Li, and Y. Chen, J. Cereb. Blood Flow Metabolism 32, 938 (2012). [CrossRef]
  5. Y. Yuan, S. Yang, and D. Xing, Appl. Phys. Lett. 100, 023702 (2012). [CrossRef]
  6. L. V. Wang and S. Hu, Science 335, 1458 (2012). [CrossRef]
  7. L. V. Wang, Nat. Photonics 3, 503 (2009). [CrossRef]
  8. W. Xing, L. Wang, K. Maslov, and L. V. Wang, Opt. Lett. 38, 52 (2013). [CrossRef]
  9. K. L. Reichenbach and C. Xu, Opt. Express 15, 2151 (2007). [CrossRef]
  10. Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, J. Biomed. Opt. 18, 076007 (2013). [CrossRef]
  11. H. Wang, X. Yang, Y. Liu, B. Jiang, and Q. Luo, Opt. Express 21, 24210 (2013). [CrossRef]
  12. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006). [CrossRef]
  13. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008). [CrossRef]
  14. Laser Institute of America, American National Standard for Safe Use of Lasers (American National Standards Institute, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited