OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 13 — Jul. 1, 2014
  • pp: 3942–3945

Intense 2.8  μm emission of Ho3+ doped PbF2 single crystal

Peixiong Zhang, Jigang Yin, Baitao Zhang, Lianhan Zhang, Jiaqi Hong, Jingliang He, and Yin Hang  »View Author Affiliations


Optics Letters, Vol. 39, Issue 13, pp. 3942-3945 (2014)
http://dx.doi.org/10.1364/OL.39.003942


View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Ho3+-doped PbF2 mid-IR laser crystal was successfully grown using the vertical Bridgman method. An intense 2.8 μm emission in Ho:PbF2 crystal was observed for the first time. By analyzing the absorption and emission measurements of the Ho:PbF2 crystal with the Judd–Ofelt theory, the intensity parameters Ω2,4,6, exited state lifetimes, branching ratios, and emission cross-sections were calculated. It is found that the Ho:PbF2 crystal has high fluorescence branching ratio (20.99%), large emission cross section (1.44×1020cm2), long fluorescence lifetime (5.4 ms), and high quantum efficiency (88.4%) corresponding to the stimulated emission of Ho3+: I65I75 transition. The structure of Ho:PbF2 crystal was also analyzed by the Raman spectrum, and it was found that the Ho:PbF2 crystal possesses low phonon energy of 257cm1. We propose that the Ho:PbF2 crystal may be a promising material for 2.8 μm laser applications.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Spectroscopy

History
Original Manuscript: April 21, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 23, 2014
Published: June 26, 2014

Citation
Peixiong Zhang, Jigang Yin, Baitao Zhang, Lianhan Zhang, Jiaqi Hong, Jingliang He, and Yin Hang, "Intense 2.8  μm emission of Ho3+ doped PbF2 single crystal," Opt. Lett. 39, 3942-3945 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-13-3942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. D. Aggarwal, L. B. Shaw, and J. S. Sanghera, Proc. SPIE 6453, 645312 (2007). [CrossRef]
  2. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, Opt. Express 17, 15350 (2009). [CrossRef]
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009). [CrossRef]
  4. B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, Opt. Commun. 191, 315 (2001). [CrossRef]
  5. T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, Opt. Lett. 21, 585 (1996). [CrossRef]
  6. M. Pollnau, W. Luthy, H. P. Weber, T. Jensen, G. Huber, A. Cassanho, H. P. Jenssen, and R. A. MacFarlane, Opt. Lett. 21, 48 (1996). [CrossRef]
  7. D. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, Opt. Lett. 24, 385 (1999). [CrossRef]
  8. N. Djeu, V. E. Hartwell, A. A. Kaminskii, and A. V. Butashin, Opt. Lett. 22, 997 (1997). [CrossRef]
  9. L. F. Johnson and H. J. Guggenheim, Appl. Phys. Lett. 23, 96 (1973). [CrossRef]
  10. T. Li, K. Beil, C. Krnkel, and G. Huber, Opt. Lett. 37, 2568 (2012). [CrossRef]
  11. P. Zhang, Y. Hang, and L. Zhang, Opt. Lett. 37, 5241 (2012). [CrossRef]
  12. F. Cornacchia, A. Toncelli, and M. Tonelli, Prog. Quantum Electron. 33, 61 (2009). [CrossRef]
  13. I. Nicoara, L. Lighezan, M. Enculescu, and I. Enculescu, J. Cryst. Growth 310, 2026 (2008).
  14. J. Yin, Y. Hang, X. He, L. Zhang, C. Zhao, and J. Gong, Opt. Lett. 37, 109 (2012). [CrossRef]
  15. W. J. Tropf, M. F. Thomas, and T. J. Harris, Handbook of Optics, Vol. 2 (McGraw-Hill, 1995).
  16. G. Dantelle, M. Mortier, P. Goldner, and D. Vivien, J. Phys. Condens. Matter 18, 7905 (2006).
  17. S. E. Hatch, W. F. Parsons, and R. J. Weagley, Appl. Phys. Lett. 5, 153 (1964). [CrossRef]
  18. J. A. Burton, R. C. Prim, and W. P. Slichter, J. Chem. Phys. 21, 1987 (1953). [CrossRef]
  19. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, Appl. Phys. Lett. 81, 1937 (2002). [CrossRef]
  20. A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, J. Phys. C 4, 3107 (1971). [CrossRef]
  21. G. Wang, S. Dai, J. Zhang, S. Xu, L. Hu, and Z. Jiang, J. Non-Cryst. Solids 351, 2147 (2005).
  22. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962). [CrossRef]
  23. B. R. Judd, Phys. Rev. 127, 750 (1962). [CrossRef]
  24. B. M. Walsh, G. W. Grew, and N. P. Barnes, J. Math. Phys. 17, 7643 (2005).
  25. C. Zhao, Y. Hang, L. Zhang, J. Yin, P. Hu, and E. Ma, Opt. Matter. 33, 1610 (2011).
  26. S. A. Payne, L. K. Smith, and W. F. Krupke, J. Appl. Phys. 77, 4274 (1995). [CrossRef]
  27. B. F. Aull and H. P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982). [CrossRef]
  28. L. Gomes, D. Milanese, J. Lousteau, N. Boetti, and S. D. Jackson, J. Appl. Phys. 109, 103110 (2011). [CrossRef]
  29. W. Hayes, A. J. Rushworth, J. F. Ryan, R. J. Elliott, and W. G. Kleppmannl, J. Phys. C 10, L111 (1977). [CrossRef]
  30. D. E. McCumber, Phys. Rev. 136, A954 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited