OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 13 — Jul. 1, 2014
  • pp: 3982–3985

Optical radiative crosstalk in integrated photonic waveguides

Daniele Melati, Francesco Morichetti, Gian Guido Gentili, and Andrea Melloni  »View Author Affiliations

Optics Letters, Vol. 39, Issue 13, pp. 3982-3985 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the comprehensive experimental characterization of optical crosstalk between waveguides caused by scattering. Our results reveal that a strong power exchange between close-placed waveguides due to sidewall roughness exists also for high-quality, low-loss waveguides. We derive a power-law dependence of the coupling on the distance between the waveguides, confirmed by an ad hoc developed electromagnetic model. Further, we demonstrate higher order mode excitation caused by scattered light and the appearance of decorrelation between the guided modes propagating in waveguides coupled via radiative mechanism, providing a full description of this phenomenon.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Optical Devices

Original Manuscript: April 24, 2014
Revised Manuscript: May 26, 2014
Manuscript Accepted: May 26, 2014
Published: June 27, 2014

Daniele Melati, Francesco Morichetti, Gian Guido Gentili, and Andrea Melloni, "Optical radiative crosstalk in integrated photonic waveguides," Opt. Lett. 39, 3982-3985 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013). [CrossRef]
  2. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, Opt. Lett. 32, 2801 (2007). [CrossRef]
  3. J. Powelson, W. Feng, S. Lin, R. J. Feuerstein, and D. Tomic, J. Lightwave Technol. 16, 2020 (1998). [CrossRef]
  4. G. Veronis and S. Fan, Opt. Express 16, 2129 (2008). [CrossRef]
  5. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010). [CrossRef]
  6. D. Marcuse, Bell Syst. Tech. J. 50, 1817 (1971).
  7. D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, J. Lightwave Technol. 30, 3610 (2012). [CrossRef]
  8. A. S. Sudbo, J. Eur. Opt. Soc. A 2, 211 (1993).
  9. T. Barwicz and H. Haus, J. Lightwave Technol. 23, 2719 (2005). [CrossRef]
  10. K. Michalski, IEE Proc. H 132, 312 (1985). [CrossRef]
  11. W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, J. Vac. Sci. Technol. B 23, 2041 (2005). [CrossRef]
  12. D. Marcuse, Bell Syst. Tech. J. 48, 3233 (1969).
  13. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited