OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 13 — Jul. 1, 2014
  • pp: 3989–3992

Bessel-like photonic nanojets from core-shell sub-wavelength spheres

David Grojo, Nicolas Sandeau, Luca Boarino, Catalin Constantinescu, Natascia De Leo, Michele Laus, and Katia Sparnacci  »View Author Affiliations


Optics Letters, Vol. 39, Issue 13, pp. 3989-3992 (2014)
http://dx.doi.org/10.1364/OL.39.003989


View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is accepted so far that the formation of photonic nanojets requires the use of large dielectric spheres (several wavelengths in diameter). Here we show both numerically and experimentally that similar effects can be obtained with properly engineered sub-wavelength core-shell colloids. The design of the spheres is strongly inspired by a far-field approach for the generation of Bessel beams.

© 2014 Optical Society of America

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Scattering

History
Original Manuscript: May 1, 2014
Revised Manuscript: June 3, 2014
Manuscript Accepted: June 3, 2014
Published: June 30, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
David Grojo, Nicolas Sandeau, Luca Boarino, Catalin Constantinescu, Natascia De Leo, Michele Laus, and Katia Sparnacci, "Bessel-like photonic nanojets from core-shell sub-wavelength spheres," Opt. Lett. 39, 3989-3992 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-13-3989


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lecler, Y. Takakura, and P. Meyrueis, Opt. Lett. 30, 2641 (2005). [CrossRef]
  2. A. V. Itagi and W. A. Challener, J. Opt. Soc. Am. A 22, 2847 (2005). [CrossRef]
  3. D. Ju, H. Pei, Y. Jiang, and X. Sun, Appl. Phys. Lett. 102, 171109 (2013). [CrossRef]
  4. Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011). [CrossRef]
  5. Y. Duan, G. Barbastathis, and B. Zhang, Opt. Lett. 38, 2988 (2013). [CrossRef]
  6. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008). [CrossRef]
  7. D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, Opt. Express 16, 15297 (2008). [CrossRef]
  8. X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005). [CrossRef]
  9. E. McLeod and C. B. Arnold, Nat. Nanotechnol. 3, 413 (2008). [CrossRef]
  10. D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012). [CrossRef]
  11. G. Mie, Ann. Phys. 330, 377 (1908). [CrossRef]
  12. A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951). [CrossRef]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method (Artech House, 2005).
  14. D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).
  15. M. Vasnetsov, V. Pas’ko, A. Khoroshun, V. Slyusar, and M. Soskin, Opt. Lett. 32, 1830 (2007). [CrossRef]
  16. M. S. Kim, T. Scharf, C. Etrich, C. Rockstuhl, and H. P. Herzig, Opt. Lett. 37, 305 (2012). [CrossRef]
  17. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, J. Opt. Soc. Am. B 28, 1825 (2011). [CrossRef]
  18. C.-Y. Liu, Phys. Lett. A 376, 1856 (2012). [CrossRef]
  19. R. M. Herman and T. A. Wiggins, J. Opt. Soc. Am. A 8, 932 (1991). [CrossRef]
  20. S. B. Purnapatra, S. Bera, and P. P. Mondal, Sci. Rep. 2, 692 (2012). [CrossRef]
  21. E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003). [CrossRef]
  22. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987). [CrossRef]
  23. A. Devilez, B. Stout, and N. Bonod, Proc. SPIE 7786, 77860G (2010). [CrossRef]
  24. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, Opt. Express 19, 10206 (2011). [CrossRef]
  25. J. Martin, J. Proust, D. Gerard, J.-L. Bijeon, and J. Plain, Opt. Lett. 37, 1274 (2012). [CrossRef]
  26. V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, Opt. Lett. 36, 3100 (2011). [CrossRef]
  27. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012). [CrossRef]
  28. T. Wen, R. A. Booth, and S. A. Majetich, Nano Lett. 12, 5873 (2012). [CrossRef]
  29. A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited