OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 13 — Jul. 1, 2014
  • pp: 4037–4040

Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm

Alexander Sabella, James A. Piper, and Richard P. Mildren  »View Author Affiliations

Optics Letters, Vol. 39, Issue 13, pp. 4037-4040 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a pulsed mid-infrared diamond Raman laser with output tuned from 3.38 to 3.80 μm through varying the optical parametric oscillator (OPO) pump wavelength. To our knowledge this is the longest reported wavelength from a solid-state Raman laser. We generated up to 80 μJ with good beam quality and 22% quantum conversion efficiency. Whilst the conversion process itself is efficient, approximately 40% of the generated Stokes light is lost to multiphonon absorption. By introducing a secondary pump beam at the anti-Stokes wavelength to initiate a seed at the Stokes wavelength through Raman resonant four-wave mixing, the laser threshold was reduced by approximately half, and the maximum output increased by 44% to 115 μJ.

© 2014 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.4330) Materials : Nonlinear optical materials
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 10, 2014
Revised Manuscript: May 28, 2014
Manuscript Accepted: May 30, 2014
Published: June 30, 2014

Alexander Sabella, James A. Piper, and Richard P. Mildren, "Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm," Opt. Lett. 39, 4037-4040 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Pask, Prog. Quantum Electron. 27, 3 (2003). [CrossRef]
  2. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013), pp. 295–352.
  3. T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, Laser Phys. Lett. 3, 17 (2006). [CrossRef]
  4. J. Zhao, X. Zhang, X. Guo, X. Bao, L. Li, and J. Cui, Opt. Lett. 38, 1206 (2013). [CrossRef]
  5. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, Opt. Lett. 39, 2052 (2014). [CrossRef]
  6. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006). [CrossRef]
  7. J. Ma and S. Fathpour, Opt. Express 20, 17962 (2012). [CrossRef]
  8. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, Opt. Express 15, 14355 (2007). [CrossRef]
  9. X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, Laser Photon. Rev. 7, 1054 (2013). [CrossRef]
  10. R. P. Mildren, Optical Engineering of Diamond (Wiley-VCH, 2013), pp. 1–34.
  11. V. G. Savitski, S. Reilly, and A. J. Kemp, IEEE J. Quantum Electron. 49, 218 (2013). [CrossRef]
  12. A. Sabella, J. A. Piper, and R. P. Mildren, Proc. SPIE 8959, 89590B (2014). [CrossRef]
  13. R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, in Optical Engineering of Diamond (Wiley-VCH, 2013), pp. 239–276.
  14. M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, Laser Phys. Lett. 9, 35 (2012). [CrossRef]
  15. D. S. Hobbs, Proc. SPIE 7842, 78421Z (2010). [CrossRef]
  16. A. Sabella, J. A. Piper, and R. P. Mildren, Opt. Lett. 35, 3874 (2010). [CrossRef]
  17. D. V. Hahn, M. E. Thomas, D. W. Blodgett, and S. G. Kaplan, Proc. SPIE 5078, 148 (2003). [CrossRef]
  18. L. L. Losev, J. Song, J. F. Xia, D. Strickland, and V. V. Brukhanov, Opt. Lett. 27, 2100 (2002). [CrossRef]
  19. T. T. Basiev, S. N. Smetanin, A. S. Shurygin, and A. V. Fedin, Phys. Uspekhi 53, 611 (2010). [CrossRef]
  20. V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Y. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited